175 research outputs found
The radiation intensity of the Lyman alpha line at the ionization front in the quasi-steady plasma accelerator
Research of the radiation transport in the ionizing gas streams in the channel of the quasi-steady plasma accelerator is carried out. The quasi-one-dimensional model of the ionizing gas flow includes the MHD equations combined with the ionization and recombination kinetics equation within the framework of the modified diffusion approximation. Solution of the radiation transport equation is based on calculation of the plasma emissivity, the photon absorption coefficients, the line profile and use of the method of characteristics. Distribution of the radiation intensity for the Lyman alpha line is obtained, and also the integrated values of the density of the radiation energy and the radiation energy flux for all parts of the hydrogen spectrum along the accelerator channel are presented.ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ° ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² ΠΏΠΎΡΠΎΠΊΠ°Ρ
ΠΈΠΎΠ½ΠΈΠ·ΡΡΡΠ΅Π³ΠΎΡΡ Π³Π°Π·Π° Π² ΠΊΠ°Π½Π°Π»Π΅ ΠΊΠ²Π°Π·ΠΈΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠΈΡΠ΅Π»Ρ. ΠΠ²Π°Π·ΠΈΠΎΠ΄Π½ΠΎΠΌΠ΅ΡΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈΠΎΠ½ΠΈΠ·ΡΡΡΠ΅Π³ΠΎΡΡ Π³Π°Π·Π° ΠΎΡΠ½ΠΎΠ²Π°Π½Π° Π½Π° ΠΠΠ- ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ
Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΠΈΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ° ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ Π½Π° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΈΠ·Π»ΡΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΡΠΎΠ½ΠΎΠ², ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΏΡΠΎΡΠΈΠ»Ρ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ. ΠΠΎΠ»ΡΡΠ΅Π½ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΡΠ΅Π½ΡΡΠ° Π°Π»ΡΡΠ°-Π»ΠΈΠ½ΠΈΠΈ ΠΠ°ΠΉΠΌΠ°Π½Π°, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΈ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΡΠΎΠΊΠ° ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π΄Π»Ρ Π²ΡΠ΅Π³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° Π²Π΄ΠΎΠ»Ρ ΠΊΠ°Π½Π°Π»Π° ΡΡΠΊΠΎΡΠΈΡΠ΅Π»Ρ.ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΏΠ΅ΡΠ΅Π½Π΅ΡΠ΅Π½Π½Ρ Π²ΠΈΠΏΡΠΎΠΌΡΠ½ΡΠ²Π°Π½Π½Ρ Π² ΠΏΠΎΡΠΎΠΊΠ°Ρ
Π³Π°Π·Ρ, ΡΠΎ ΡΠΎΠ½ΡΠ·ΡΡΡΡΡΡ, Π² ΠΊΠ°Π½Π°Π»Ρ ΠΊΠ²Π°Π·ΡΡΡΠ°ΡΡΠΎΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ»Π°Π·ΠΌΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΈΡΠΊΠΎΡΡΠ²Π°ΡΠ°. ΠΠ²Π°Π·ΡΠΎΠ΄Π½ΠΎΠ²ΠΈΠΌΡΡΠ½Π° ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠ΅ΡΡΠΉ Π³aΠ·Ρ, ΡΠΎ ΡΠΎΠ½ΡΠ·ΡΡΡΡΡΡ, Π·Π°ΡΠ½ΠΎΠ²Π°Π½Π° Π½Π° ΠΠΠ-ΡΡΠ²Π½Π΅Π½Π½ΡΡ
Π· ΡΡΠ°Ρ
ΡΠ²Π°Π½Π½ΡΠΌ ΠΊΡΠ½Π΅ΡΠΈΠΊΠΈ ΡΠΎΠ½ΡΠ·Π°ΡΡΡ Ρ ΡΠ΅ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΌΠΎΠ΄ΠΈΡΡΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ·ΡΠΉΠ½ΠΎΠ³ΠΎ Π½Π°Π±Π»ΠΈΠΆΠ΅Π½Π½Ρ. ΠΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½Ρ ΠΏΠ΅ΡΠ΅Π½Π΅ΡΠ΅Π½Π½Ρ Π²ΠΈΠΏΡΠΎΠΌΡΠ½ΡΠ²Π°Π½Π½Ρ Π·Π°ΡΠ½ΠΎΠ²Π°Π½Π΅ Π½Π° ΠΎΠ±ΡΠΈΡΠ»Π΅Π½Π½Ρ Π²ΠΈΠΏΡΠΎΠΌΡΠ½ΡΠ²Π°Π»ΡΠ½ΠΎΡ Π·Π΄Π°ΡΠ½ΠΎΡΡΡ Ρ ΠΊΠΎΠ΅ΡΡΡΡΡΠ½Ρa ΠΏΠΎΠ³Π»ΠΈΠ½Π°Π½Π½Ρ ΡΠΎΡΠΎΠ½ΡΠ², Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΠΏΡΠΎΡΡΠ»Ρ Ρ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ. ΠΡΡΠΈΠΌΠ°Π½ΠΎ ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ» ΡΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ Π²ΠΈΠΏΡΠΎΠΌΡΠ½ΡΠ²Π°Π½Π½Ρ ΡΠ΅Π½ΡΡa Π°Π»ΡΡΠ°-Π»ΡΠ½ΡΡ ΠΠ°ΠΉΠΌΠ°Π½Π°, Π° ΡΠ°ΠΊΠΎΠΆ ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ»ΠΈ Π³ΡΡΡΠΈΠ½ΠΈ Π΅Π½Π΅ΡΠ³ΡΡ Ρ Π³ΡΡΡΠΈΠ½ΠΈ ΠΏΠΎΡΠΎΠΊΡ Π΅Π½Π΅ΡΠ³ΡΡ Π²ΠΈΠΏΡΠΎΠΌΡΠ½ΡΠ²Π°Π½Π½Ρ Π΄Π»Ρ Π²ΡΡΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡa ΡΠ·Π΄ΠΎΠ²ΠΆ ΠΊΠ°Π½Π°Π»Ρ ΠΏΡΠΈΡΠΊΠΎΡΡΠ²Π°ΡΠ°
Randomness in Classical Mechanics and Quantum Mechanics
The Copenhagen interpretation of quantum mechanics assumes the existence of
the classical deterministic Newtonian world. We argue that in fact the Newton
determinism in classical world does not hold and in classical mechanics there
is fundamental and irreducible randomness. The classical Newtonian trajectory
does not have a direct physical meaning since arbitrary real numbers are not
observable. There are classical uncertainty relations, i.e. the uncertainty
(errors of observation) in the determination of coordinate and momentum is
always positive (non zero).
A "functional" formulation of classical mechanics was suggested. The
fundamental equation of the microscopic dynamics in the functional approach is
not the Newton equation but the Liouville equation for the distribution
function of the single particle. Solutions of the Liouville equation have the
property of delocalization which accounts for irreversibility. The Newton
equation in this approach appears as an approximate equation describing the
dynamics of the average values of the position and momenta for not too long
time intervals. Corrections to the Newton trajectories are computed. An
interpretation of quantum mechanics is attempted in which both classical and
quantum mechanics contain fundamental randomness. Instead of an ensemble of
events one introduces an ensemble of observers.Comment: 12 pages, Late
Proof of the multi-Regge form of QCD amplitudes with gluon exchanges in the NLA
The multi--Regge form of QCD amplitudes with gluon exchanges is proved in the
next-to-leading approximation. The proof is based on the bootstrap relations,
which are required for the compatibility of this form with the s-channel
unitarity. We show that the fulfillment of all these relations ensures the
Reggeized form of energy dependent radiative corrections order by order in
perturbation theory. Then we prove that all these relations are fulfilled if
several bootstrap conditions on the Reggeon vertices and trajectory hold true.
Now all these conditions are checked and proved to be satisfied.Comment: 15 page
Π ΠΎΠ»Ρ ΠΊΠ°Π»ΡΡΠΈΠΉ-pH-Π·Π°Π²ΠΈΡΠΈΠΌΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π΅ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠ°
Comparative investigation of dynamics of pH, concentration of calcium and inorganic phosphate in mixtured saliva during testing loads in patients with healthy periodontium, susceptible to caries and with combination of caries with inflammatory periodontal diseases was performed. Close dependency between dynamics of researched parameters was revealed during sugar and urea loads as well. Inorganic phosphate disgomeostasis, role in pathogenesis of inflammatory periodontal diseases was showed.ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΡΠ, ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΊΠ°Π»ΡΡΠΈΡ ΠΈ Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°ΡΠ° Π² ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΡΠ»ΡΠ½Π΅ ΠΏΡΠΈ ΡΠ΅ΡΡΠΎΠ²ΡΡ
Π½Π°Π³ΡΡΠ·ΠΊΠ°Ρ
Ρ Π»ΠΈΡ ΡΠΎ Π·Π΄ΠΎΡΠΎΠ²ΡΠΌ ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠΎΠΌ, ΠΊΠ°ΡΠΈΠ΅ΡΠ²ΠΎΡΠΏΡΠΈΠΌΡΠΈΠ²ΡΡ
ΠΈ Ρ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠ΅ΠΌ ΠΊΠ°ΡΠΈΠ΅ΡΠ° ΠΈ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠ°. ΠΡΡΠ²Π»Π΅Π½Π° ΡΠ΅ΡΠ½Π°Ρ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΈΠ·ΡΡΠ°Π΅ΠΌΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΊΠ°ΠΊ ΠΏΡΠΈ ΡΠ°Ρ
Π°ΡΠ½ΠΎΠΉ, ΡΠ°ΠΊ ΠΈ ΠΏΡΠΈ ΠΊΠ°ΡΠ±Π°ΠΌΠΈΠ΄Π½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠ°Ρ
. ΠΠΎΠΊΠ°Π·Π°Π½Π° ΡΠΎΠ»Ρ Π΄ΠΈΡΠ³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·Π° Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°ΡΠ° Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π΅ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠ°
Regge Field Theory in zero transverse dimensions: loops versus "net" diagrams
Toy models of interacting Pomerons with triple and quaternary Pomeron
vertices in zero transverse dimension are investigated. Numerical solutions for
eigenvalues and eigenfunctions of the corresponding Hamiltonians are obtained,
providing the quantum solution for the scattering amplitude in both models. The
equations of motion for the Lagrangians of the theories are also considered and
the classical solutions of the equations are found. Full two-point Green
functions ("effective" Pomeron propagator) and amplitude of diffractive
dissociation process are calculated in the framework of RFT-0 approach. The
importance of the loops contribution in the amplitude at different values of
the model parameters is discussed as well as the difference between the models
with and without quaternary Pomeron vertex.Comment: 34 pages, 36 figure
Bouncing and Accelerating Solutions in Nonlocal Stringy Models
A general class of cosmological models driven by a non-local scalar field
inspired by string field theories is studied. In particular cases the scalar
field is a string dilaton or a string tachyon. A distinguished feature of these
models is a crossing of the phantom divide. We reveal the nature of this
phenomena showing that it is caused by an equivalence of the initial non-local
model to a model with an infinite number of local fields some of which are
ghosts. Deformations of the model that admit exact solutions are constructed.
These deformations contain locking potentials that stabilize solutions.
Bouncing and accelerating solutions are presented.Comment: Minor corrections, references added, published in JHE
Anisotropic conductivity of Nd_{1.85}Ce_{0.15}CuO_{4-\delta} films at submillimeter wavelengths
The anisotropic conductivity of thin NdCeCuO
films was measured in the frequency range 8 cm 40 cm and
for temperatures 4 K K. A tilted sample geometry allowed to extract
both, in-plane and c-axis properties. The in-plane quasiparticle scattering
rate remains unchanged as the sample becomes superconducting. The temperature
dependence of the in-plane conductivity is reasonably well described using the
Born limit for a d-wave superconductor. Below T_{{\rm C}%} the c-axis
dielectric constant changes sign at the screened c-axis plasma
frequency. The temperature dependence of the c-axis conductivity closely
follows the linear in T behavior within the plane.Comment: 4 pages, 4 figure
The type numbers of closed geodesics
A short survey on the type numbers of closed geodesics, on applications of
the Morse theory to proving the existence of closed geodesics and on the recent
progress in applying variational methods to the periodic problem for Finsler
and magnetic geodesicsComment: 29 pages, an appendix to the Russian translation of "The calculus of
variations in the large" by M. Mors
ΠΠ΅Π½ΠΈΠ½Π³ΠΎΠΊΠΎΠΊΠΊΠΎΠ²Π°Ρ ΠΏΠΎΠ»ΠΈΠ²Π°ΠΊΡΠΈΠ½Π° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΎΡΠΈΡΠ΅Π½Π½ΠΎΠΉ IgAI ΠΏΡΠΎΡΠ΅Π°Π·Ρ
IgA1-protease allocated from the culture N. meningitidis serogroup A. As original materials were used three different intermediate products of vaccine production: cultural fluid, cetavlon supernatant and cetavlon precipitate. IgA1-protease was used to evaluate their protectivity and immunogenity. It was shown, that isolated IgA1 protease from the meningococcus serogroup A is able to protect mice, infected by meningococcus serogroup B.IgA1 ΠΏΡΠΎΡΠ΅Π°Π·Π°, Π²ΡΠ΄Π΅Π»Π΅Π½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ Ρ
ΠΈΠΌΠΈΠΈ ΠΈΠ· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΠΎΡΠΈΡΡΠΊΠΈ ΠΌΠ΅Π½ΠΈΠ½Π³ΠΎΠΊΠΎΠΊΠΊΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄Π½ΠΎΠΉ ΡΠ΅ΡΠΎΠ³ΡΡΠΏΠΏΡ Π Π²Π°ΠΊΡΠΈΠ½Ρ, ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΉ ΠΈΠΌΠΌΡΠ½ΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΠΈ ΠΏΡΠΎΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ Π΄Π»Ρ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ
ΠΌΡΡΠ΅ΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Ρ ΠΈΡ
Π·Π°ΡΠΈΡΡ ΠΎΡ ΡΠΌΠ΅ΡΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π²ΠΈΡΡΠ»Π΅Π½ΡΠ½ΡΠΌΠΈ ΡΡΠ°ΠΌΠΌΠ°ΠΌΠΈ ΡΠ΅ΡΠΎΠ³ΡΡΠΏΠΏ Π ΠΈ Π ΠΌΠ΅Π½ΠΈΠ½Π³ΠΎΠΊΠΎΠΊΠΊΠΎΠ². ΠΡΠΎΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΠΈ Π½Π°ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ Π°Π½ΡΠΈ-IgA1 Π°Π½ΡΠΈΡΠ΅Π» ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π²Π°ΠΊΡΠΈΠ½Π½ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠΈ ΠΈΠ·ΡΡΠ°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΠΎΠΆΠ΅Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ, Π² ΠΏΠ΅ΡΠ²ΡΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ° ΠΎΡΡΡΡΡΡΠ²ΡΡΡΠ΅ΠΉ Π΄ΠΎ Π½Π°ΡΡΠΎΡΡΠ΅Π³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΌΠ΅Π½ΠΈΠ½Π³ΠΎΠΊΠΎΠΊΠΊΠΎΠ²ΠΎΠΉ ΡΠ΅ΡΠΎΠ³ΡΡΠΏΠΏΡ Π Π²Π°ΠΊΡΠΈΠ½Ρ
- β¦