7 research outputs found

    Electrochemical behavior of chloramphenicol on carbon electrodes in a microelectrochemical cell

    Get PDF
    Express determination of antibiotics is an extremely important task today. Portable electrochemical microdevices are a viable alternative to traditional methods of analysis. The development of such devices requires the study of redox processes in detail. This article is devoted to the comparative study of the electrochemical behavior of chloramphenicol in water solvents in standard laboratory and portable microelectrochemical cells. It was found that the electrochemical reduction of chloramphenicol proceeds via a 3-electron mechanism to the formation of a dimer. In the transition from the macrocell to the microcell, a decrease in the electrochemical reduction current and a shift of the peak potential to the cathode region are observed, which is apparently associated mainly with the type of the electrode material. The best characteristics of the direct electrochemical response were obtained in the differential pulse voltammetry mode. Under the selected operating parameters, the peak current of the electrochemical reduction of chloramphenicol is linearly dependent on the concentration of the antibiotic in the range of 2∙10–3–1∙10–5 M with a detection limit of 3∙10–5 M. Obtained characteristics are sufficient for the quality control of pharmaceuticals and can be improved through the use of organic and hybrid modifiers of the working electrode surface

    The electrochemical behavior’s character of a potential antiviral drug 3-nitro-4-hydroxy-7-methylthio-4H-[1,2,4]triazolo[5,1-c][1,2,4]triazinide monohydrate

    Get PDF
    The results of this study of the electrochemical transformation of 3-R-4-hydroxy-1,4-dihydro-7-X-1,2,4-triazolo[5,1-c][1,2,4] obtained by voltammetry are presented. It was found that 3-R-4-hydroxy-1,4-dihydro-7-X-1,2,4-triazolo[5,1-c][1,2,4] derivatives are capable of electrochemical reduction in the potential range of –0.28 to –0.33 V (relative to Ag/AgCl) in Britton–Robinson buffer at pH = 2. The electrochemical behavior of the sodium salt of 3-nitro-4-hydroxy-7-methylthio-4H-[1,2,4]triazolo[5,1-c][1,2,4]triazinide monohydrate (compound 1), which in silico modeling predicted possible biological activity against various tick-borne encephalitis and Coxsackie B3 viruses. At the potentials of the first stage of electroreduction at pH = 2, the main transformation process is the three-electron reduction scheme of the nitro group of compound 1. It was established that compound 1 in an aprotic medium is reduced in ionic form, most likely in the form of an ion pair with the Na+ cation, and in an aqueous medium in the form of a protonated particle. Based on this, a scheme was proposed for the probable electrochemical transformation of the studied compound

    Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis

    Full text link
    Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors’ application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the “test-tube to the smartphone”

    Electrochemical creatinine determination with metal-organic framework catalyst based on copper and acetylenedicarboxylic acid

    Get PDF
    Fast and accurate determination of creatinine is critical in kidney function diagnostics. This paper discusses the usage of the metal-organic framework based on copper(II) and acetylenedicarboxylic acid (CuADCA) as a catalyst of electrochemical oxidation of creatinine, glucose and urea. CuADCA was synthesized by deprotonation with triethylamine for the first time. Successful synthesis was confirmed by FTIR and EDS. The material was characterized by SEM, EIS, and CV. CuADCA forms laminated-like flakes with diameter from 1 µm to 20 µm, which is consistent with the polymer-like structure. CV and EIS analyses showed that CuADCA immobilized on GCE acts as a catalyst in electrooxidation reaction of glucose, urea, and creatinine. The sensitivity of creatinine detection, 1057±99 µA/mM, was higher than the detection sensitivity of glucose and urea by more than 100 times with the limit of detection of 2 µM, so CuADCA is a promising material for further development of enzymeless sensors for creatinine
    corecore