42 research outputs found

    The role of lipids in mechanosensation

    Get PDF
    Acknowledgements: This work was supported by Wellcome Trust grants WT092552MA (J.H.N. and I.R.B.), Senior Investigator Award WT100209MA (J.H.N.), 093228 (T.K.S.) and 092970 (M.S.P.S.), and Biotechnology and Biological Sciences Research Council grants BB/I019855/1 (M.S.P.S.), BB/H017917/1 (J.H.N. and I.R.B.) and BB/J009784/1 (H.B.). We acknowledge the Diamond Light Source for beam time. I.R.B. is supported as a Leverhulme Emeritus Fellow. J.H.N. is supported as a Royal Society Wolfson Merit Award holder and as a 1000 Talent Scholar at Sichuan University. A.C.E.D. was supported by an Engineering and Physical Sciences Research Council Systems Biology Doctoral Training Centre student fellowship. We thank R. Phillips, A. Lee and S. Conway for helpful discussions.Peer reviewedPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprin

    A monodisperse transmembrane α-helical peptide barrel

    Get PDF
    The fabrication of monodisperse transmembrane barrels formed from short synthetic peptides has not been demonstrated previously. This is in part because of the complexity of the interactions between peptides and lipids within the hydrophobic environment of a membrane. Here we report the formation of a transmembrane pore through the self-assembly of 35 amino acid α-helical peptides. The design of the peptides is based on the C-terminal D4 domain of the Escherichia coli polysaccharide transporter Wza. By using single-channel current recording, we define discrete assembly intermediates and show that the pore is most probably a helix barrel that contains eight D4 peptides arranged in parallel. We also show that the peptide pore is functional and capable of conducting ions and binding blockers. Such α-helix barrels engineered from peptides could find applications in nanopore technologies such as single-molecule sensing and nucleic-acid sequencing

    How β-Lactam Antibiotics Enter Bacteria: A Dialogue with the Porins

    Get PDF
    BACKGROUND:Multi-drug resistant (MDR) infections have become a major concern in hospitals worldwide. This study investigates membrane translocation, which is the first step required for drug action on internal bacterial targets. beta-lactams, a major antibiotic class, use porins to pass through the outer membrane barrier of Gram-negative bacteria. Clinical reports have linked the MDR phenotype to altered membrane permeability including porin modification and efflux pump expression. METHODOLOGY/PRINCIPAL FINDINGS: Here influx of beta-lactams through the major Enterobacter aerogenes porin Omp36 is characterized. Conductance measurements through a single Omp36 trimer reconstituted into a planar lipid bilayer allowed us to count the passage of single beta-lactam molecules. Statistical analysis of each transport event yielded the kinetic parameters of antibiotic travel through Omp36 and distinguishable translocation properties of beta-lactams were quantified for ertapenem and cefepime. Expression of Omp36 in an otherwise porin-null bacterial strain is shown to confer increases in the killing rate of these antibiotics and in the corresponding bacterial susceptibility. CONCLUSIONS/SIGNIFICANCE: We propose the idea of a molecular "passport" that allows rapid transport of substrates through porins. Deciphering antibiotic translocation provides new insights for the design of novel drugs that may be highly effective at passing through the porin constriction zone. Such data may hold the key for the next generation of antibiotics capable of rapid intracellular accumulation to circumvent the further development MDR infections
    corecore