36 research outputs found

    A comparative study of biodegradation of vinyl acetate by environmental strains

    Get PDF
    Four Gram-negative strains, E3_2001, EC1_2004, EC3_3502 and EC2_3502, previously isolated from soil samples, were subjected to comparative studies in order to select the best vinyl acetate degrader for waste gas treatment. Comparison of biochemical and physiological tests as well as the results of fatty acids analyses were comparable with the results of 16S rRNA gene sequence analyses. The isolated strains were identified as Pseudomonas putida EC3_2001, Pseudomonas putida EC1_2004, Achromobacter xylosoxidans EC3_3502 and Agrobacterium sp. EC2_3502 strains. Two additional strains, Pseudomonas fluorescens PCM 2123 and Stenotrophomonas malthophilia KB2, were used as controls. All described strains were able to use vinyl acetate as the only source of carbon and energy under aerobic as well as oxygen deficiency conditions. Esterase, alcohol dehydrogenase and aldehyde dehydrogenase were involved in vinyl acetate decomposition under aerobic conditions. Shorter degradation times of vinyl acetate were associated with accumulation of acetic acid, acetaldehyde and ethanol as intermediates in the culture fluids of EC3_2001 and KB2 strains. Complete aerobic degradation of vinyl acetate combined with a low increase in biomass was observed for EC3_2001 and EC1_2004 strains. In conclusion, P. putida EC1_2004 is proposed as the best vinyl acetate degrader for future waste gas treatment in trickle-bed bioreactors

    GFP-tagged multimetal-tolerant bacteria and their detection in the rhizosphere of white mustard

    Get PDF
    The introduction of rhizobacteria that tolerate heavy metals is a promising approach to support plants involved in phytoextraction and phytostabilisation. In this study, soil of a metal-mine wasteland was analyzed for the presence of metal-tolerant bacterial isolates, and the tolerance patterns of the isolated strains for a number of heavy metals and antibiotics were compared. Several of the multimetal-tolerant strains were tagged with a broad host range reporter plasmid (i.e. pPROBE-NT) bearing a green fluorescent protein marker gene (gfp). Overall, the metal-tolerant isolates were predominately Gram-negative bacteria. Most of the strains showed a tolerance to five metals (Zn, Cu, Ni, Pb and Cd), but with differing tolerance patterns. From among the successfully tagged isolates, we used the transconjugant Pseudomonas putida G25 (pPROBE-NT) to inoculate white mustard seedlings. Despite a significant decrease in transconjugant abundance in the rhizosphere, the gfp-tagged cells survived on the root surfaces at a level previously reported for root colonisers

    Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The influence of diet on intestinal microflora has been investigated mainly using conventional microbiological approaches. Although these studies have advanced knowledge on human intestinal microflora, it is imperative that new methods are applied to facilitate scientific progress. Culture-independent molecular fingerprinting method of Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE) has been used to study microbial communities in a variety of environmental samples. However, these protocols must be optimized prior to their application in order to enhance the quality and accuracy of downstream analyses. In this study, the relative efficacy of four commercial DNA extraction kits (Mobio Ultra Clean<sup>® </sup>Fecal DNA Isolation Kit, M; QIAamp<sup>® </sup>DNA Stool Mini Kit, Q; FastDNA<sup>® </sup>SPIN Kit, FSp; FastDNA<sup>® </sup>SPIN Kit for Soil, FSo) were evaluated. Further, PCR-DGGE technique was also assessed for its feasibility in detecting differences in human intestinal bacterial fingerprint profiles.</p> <p>Method</p> <p>Total DNA was extracted from varying weights of human fecal specimens using four different kits, followed by PCR amplification of bacterial 16S rRNA genes, and DGGE separation of the amplicons.</p> <p>Results</p> <p>Regardless of kit, maximum DNA yield was obtained using 10 to 50 mg (wet wt) of fecal specimens and similar DGGE profiles were obtained. However, kits FSp and FSo extracted significantly larger amounts of DNA per g dry fecal specimens and produced more bands on their DGGE profiles than kits M and Q due to their use of bead-containing lysing matrix and vigorous shaking step. DGGE of 16S rRNA gene PCR products was suitable for capturing the profiles of human intestinal microbial community and enabled rapid comparative assessment of inter- and intra-subject differences.</p> <p>Conclusion</p> <p>We conclude that extraction kits that incorporated bead-containing lysing matrix and vigorous shaking produced high quality DNA from human fecal specimens (10 to 50 mg, wet wt) that can be resolved as bacterial community fingerprints using PCR-DGGE technique. Subsequently, PCR-DGGE technique can be applied for studying variations in human intestinal microbial communities.</p

    Interactive and Single Effects of Ectomycorrhiza Formation and Bacillus cereus on Metallothionein MT1 Expression and Phytoextraction of Cd and Zn by Willows

    Get PDF
    Single and joint ectomycorrhizal (+ Hebeloma mesophaeum) and bacterial (+ Bacillus cereus) inoculations of willows (Salix viminalis) were investigated for their potential and mode of action in the promotion of cadmium (Cd) and zinc (Zn) phytoextraction. Dual fungal and bacterial inoculations promoted the biomass production of willows in contaminated soil. Single inoculations either had no effect on the plant growth or inhibited it. All inoculated willows showed increased concentrations of nutritional elements (N, P, K and Zn) and decreased concentrations of Cd in the shoots. The lowest biomass production and concentration of Cd in the willows (+ B. cereus) were combined with the strongest expression of metallothioneins. It seems that biotic stress from bacterial invasion increased the synthesis of these stress proteins, which responded in decreased Cd concentrations. Contents of Cd and Zn in the stems of willows were combination-specific, but were always increased in dual inoculated plants. In conclusion, single inoculations with former mycorrhiza-associated B. cereus strains decreased the phytoextraction efficiency of willows by causing biotic stress. However, their joint inoculation with an ectomycorrhizal fungus is a very promising method for promoting the phytoextraction of Cd and Zn through combined physiological effects on the plant

    The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    Full text link

    Geochronology in the southern Midyan terrane: a review of constraints on the timing of magmatic pulses and tectonic evolution in a northwestern part of the Arabian Shield

    No full text
    © 2017 Taylor & Francis The southern Midyan terrane is a composite Tonian to Ediacaran tectonostratigraphic crustal block in the northern Arabian Shield that prior to Red Sea opening was contiguous with coeval rocks in the Eastern Desert of Egypt and Sinai. Ion microprobe (sensitive high-resolution ion microprobe [SHRIMP]) dating of 12 rock samples described here and the results of other dating programmes establish a clear timeframe for depositional, intrusive, and structural events in the region and provide a chronology of tectonism in this part of the Arabian-Nubian Shield. Deposition of Zaam and Bayda group volcanosedimentary rocks and emplacement of mafic-ultramafic complexes and TTG-type diorite, tonalite, and granodiorite denote formation of the Tonian (780–715 Ma) Zaam arc and fore-arc ophiolite above a possible west-dipping subduction system in the southern part of the Midyan terrane. Convergence with the Hijaz terrane farther south and obduction of ophiolite nappes resulted by ~700 Ma in development of the Yanbu suture. Ongoing or a new subduction system led to a ~705–660 Ma Cryogenian pulse of magmatism represented by I-type calc-alkaline diorite, granodiorite, and granite that have volcanic-arc and syn-collisional granite affinities. This was followed, after a brief end-Cryogenian hiatus, by a 635–~570 Ma period of Ediacaran magmatism marked by monzogranite, syenogranite, and minor gabbro and diorite. These rocks are reported to have within-plate to volcanic-arc and syncollision chemical characteristics but their precise tectonic setting is uncertain. Structurally, the intrusions are diapiric and were evidently emplaced in an extensional regime consistent with an overlap between intrusion and Najd faulting associated, at this time, with transpressional collision and northward extension through much of the ANS. Terminal magmatism in the southern Midyan terrane postdated cessation of Najd faulting at ~575 Ma and resulted in the emplacement of undeformed within-plate A-type alkali-feldspar granites and mafic (lamprophyre) and felsic dikes

    Rhizosphere bacterial communities of potato cultivars evaluated through PCR-DGGE profiles Comunidades bacterianas associadas à rizosfera de cultivares de batata avaliadas por perfis de PCR-DGGE

    Get PDF
    The objective of this work was to determine the shifts on the PCR-DGGE profiles of bacterial communities associated to the rhizosphere of potato cultivars, in order to generate baseline information for further studies of environmental risk assessment of genetically modified potato plants. A greenhouse experiment was carried out with five potato cultivars (Achat, Bintje, Agata, Monalisa and Asterix), cultivated in pots containing soil from an integrated system for agroecological production. The experiment was conducted in a split plot randomized block design with five cultivars, three sampling periods and five replicates. Rhizosphere samples were collected in three sampling dates during plant development. DNA of rhizosphere microorganisms was extracted, amplified by PCR using bacterial universal primers, and analyzed through DGGE. Shifts on the rhizosphere bacterial communities associated to rhizosphere of different cultivars were related to both cultivar and plant age. Differences among rhizosphere bacterial communities were clearest at the earliest plant age, tending to decrease in later stages. This variation was detected among bacterial communities of the five tested cultivars. The characterization of soil microbial communities can be part of plant breeding programs to be used on studies of environmental risk assessment of genetically modified potatoes.<br>O objetivo deste trabalho foi determinar as alterações nos perfis de PCR-DGGE das comunidades bacterianas associadas à rizosfera de cultivares de batata, para obter informações para futuros estudos de avaliação de risco ambiental de plantas de batatas geneticamente modificadas. Foi conduzido experimento em casa de vegetação com cinco cultivares de batata (Achat, Bintje, Ágata, Monalisa e Asterix), cultivadas em vasos com solo de um sistema integrado de produção agroecológica. O delineamento experimental foi o de blocos ao acaso, em parcelas subdivididas, com cinco cultivares, três períodos amostrais e cinco repetições. As amostras de rizosfera foram coletadas em três diferentes épocas durante o desenvolvimento das plantas. O DNA dos microrganismos associados à rizosfera foi extraído, amplificado por PCR com uso de iniciadores universais para bactérias e analisados por DGGE. Foram observadas alterações, relacionadas à cultivar e à idade da planta, nos perfis das comunidades bacterianas associadas à rizosfera das diferentes cultivares. As diferenças entre as comunidades bacterianas foram maiores na fase inicial do crescimento das plantas, com tendência a diminuir no estágio final de desenvolvimento. Essa variação foi detectada na comunidade bacteriana das cinco cultivares estudadas. A caracterização da microbiota do solo pode ser parte de programas de melhoramento de plantas a ser utilizada em estudos de avaliação de risco ambiental de batatas geneticamente modificadas
    corecore