73 research outputs found

    Alterations in Content and Localization of Defensins in Rat Ileum and Jejunum Following Ischemia-Reperfusion. Specific Peptides, in Specific Places, for Specific Jobs?

    Get PDF
    Objective: To determine alterations in quantities and distributions of natural antimicrobials following ischemia-reperfusion injury. We hypothesized that these compounds would be upregulated in areas of small intestine where changes in permeability and cellular disruption were likely and where protective mechanisms would be initiated. Methods: Rats with ischemia-reperfusion underwent superior mesenteric artery clamping and reperfusion. Shams were subjected to laparotomy but no clamping. Ileum and jejunum were harvested and sectioned, and subjected to fluorescence deconvolution microscopy for determinations of content and localization of rat beta defensins, 1, 2, 3; rat neutrophil protein-1; and cathelicidin LL-37. Modeling was performed to determine cellular location of antimicrobials. Results: Ischemia-reperfusion increased neutrophil defensin alpha (RNP-1) in jejunum; rat beta defensin 1 was increased 2-fold in ileal mucosa and slightly reduced in jejunal mucosa; rat beta defensin 2 was reduced by ischemia-reperfusion in ileum, but slightly increased in jejunum; rat beta defensin 3 was concentrated in the muscularis externa and myenteric plexus of the jejunum; ischemia-reperfusion did not alter cathelicidin LL-37 content in the small intestine, although a greater concentration was seen in jejunum compared with ileum. Conclusion: Ischemia-reperfusion injury caused changes in antimicrobial content in defined areas, and these different regulations might reflect the specific roles of jejunum versus ileum

    The Splenic Injury Outcomes Trial: An American Association For the Surgery of Trauma Multi-Institutional Study

    Get PDF
    BACKGROUND: Delayed splenic hemorrhage after nonoperative management (NOM) of blunt splenic injury (BSI) is a feared complication, particularly in the outpatient setting. Significant resources, including angiography (ANGIO), are used in an effort to prevent delayed splenectomy (DS). No prospective, long-term data exist to determine the actual risk of splenectomy. The purposes of this trial were to ascertain the 180-day risk of splenectomy after 24 hours of NOM of BSI and to determine factors related to splenectomy. METHODS: Eleven Level I trauma centers participated in this prospective observational study. Adult patients achieving 24 hours of NOM of their BSI were eligible. Patients were followed up for 180 days. Demographic, physiologic, radiographic, injury-related information, and spleen-related interventions were recorded. Bivariate and multivariable analyses were used to determine factors associated with DS. RESULTS: A total of 383 patients were enrolled. Twelve patients (3.1%) underwent in-hospital splenectomy between 24 hours and 9 days after injury. Of 366 discharged with a spleen, 1 (0.27%) required readmission for DS on postinjury Day 12. No Grade I injuries experienced DS. The splenectomy rate after 24 hours of NOM was 1.5 per 1,000 patient-days. Only extravasation from the spleen at time of admission (ADMIT-BLUSH) was associated with splenectomy (odds ratio, 3.6; 95% confidence interval, 1.4–12.4). Of patients with ADMIT-BLUSH (n = 49), 17 (34.7%) did not have ANGIO with embolization (EMBO), and 2 of those (11.8%) underwent splenectomy; 32 (65.3%) underwent ANGIO with EMBO, and 2 of those (6.3%, p = 0.6020 compared with no ANGIO with EMBO) required splenectomy. CONCLUSION: Splenectomy after 24 hours of NOM is rare. After the initial 24 hours, no additional interventions are warranted for patients with Grade I injuries. For Grades II to V, close observation as an inpatient or outpatient is indicated for 10 days to 14 days. ADMIT-BLUSH is a strong predictor of DS and should lead to close observation or earlier surgical intervention. LEVEL OF EVIDENCE: Prognostic/epidemiological study, level III; therapeutic study, level IV

    Modulation of Syndecan-1 Shedding after Hemorrhagic Shock and Resuscitation

    Get PDF
    The early use of fresh frozen plasma as a resuscitative agent after hemorrhagic shock has been associated with improved survival, but the mechanism of protection is unknown. Hemorrhagic shock causes endothelial cell dysfunction and we hypothesized that fresh frozen plasma would restore endothelial integrity and reduce syndecan-1 shedding after hemorrhagic shock. A prospective, observational study in severely injured patients in hemorrhagic shock demonstrated significantly elevated levels of syndecan-1 (554±93 ng/ml) after injury, which decreased with resuscitation (187±36 ng/ml) but was elevated compared to normal donors (27±1 ng/ml). Three pro-inflammatory cytokines, interferon-γ, fractalkine, and interleukin-1β, negatively correlated while one anti-inflammatory cytokine, IL-10, positively correlated with shed syndecan-1. These cytokines all play an important role in maintaining endothelial integrity. An in vitro model of endothelial injury then specifically examined endothelial permeability after treatment with fresh frozen plasma orlactated Ringers. Shock or endothelial injury disrupted junctional integrity and increased permeability, which was improved with fresh frozen plasma, but not lactated Ringers. Changes in endothelial cell permeability correlated with syndecan-1 shedding. These data suggest that plasma based resuscitation preserved endothelial syndecan-1 and maintained endothelial integrity, and may help to explain the protective effects of fresh frozen plasma after hemorrhagic shock

    Bone Marrow Derived Mesenchymal Stem Cells Inhibit Inflammation and Preserve Vascular Endothelial Integrity in the Lungs after Hemorrhagic Shock

    Get PDF
    Hemorrhagic shock (HS) and trauma is currently the leading cause of death in young adults worldwide. Morbidity and mortality after HS and trauma is often the result of multi-organ failure such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), conditions with few therapeutic options. Bone marrow derived mesenchymal stem cells (MSCs) are a multipotent stem cell population that has shown therapeutic promise in numerous pre-clinical and clinical models of disease. In this paper, in vitro studies with pulmonary endothelial cells (PECs) reveal that conditioned media (CM) from MSCs and MSC-PEC co-cultures inhibits PEC permeability by preserving adherens junctions (VE-cadherin and β-catenin). Leukocyte adhesion and adhesion molecule expression (VCAM-1 and ICAM-1) are inhibited in PECs treated with CM from MSC-PEC co-cultures. Further support for the modulatory effects of MSCs on pulmonary endothelial function and inflammation is demonstrated in our in vivo studies on HS in the rat. In a rat “fixed volume” model of mild HS, we show that MSCs administered IV potently inhibit systemic levels of inflammatory cytokines and chemokines in the serum of treated animals. In vivo MSCs also inhibit pulmonary endothelial permeability and lung edema with concurrent preservation of the vascular endothelial barrier proteins: VE-cadherin, Claudin-1, and Occludin-1. Leukocyte infiltrates (CD68 and MPO positive cells) are also decreased in lungs with MSC treatment. Taken together, these data suggest that MSCs, acting directly and through soluble factors, are potent stabilizers of the vascular endothelium and inflammation. These data are the first to demonstrate the therapeutic potential of MSCs in HS and have implications for the potential use of MSCs as a cellular therapy in HS-induced lung injury

    Protective role of p70S6K in intestinal ischemia/reperfusion injury in mice.

    Get PDF
    The mTOR signaling pathway plays a crucial role in the regulation of cell growth, proliferation, survival and in directing immune responses. As the intestinal epithelium displays rapid cell growth and differentiation and is an important immune regulatory organ, we hypothesized that mTOR may play an important role in the protection against intestinal ischemia reperfusion (I/R)-induced injury. To better understand the molecular mechanisms by which the mTOR pathway is altered by intestinal I/R, p70S6K, the major effector of the mTOR pathway, was investigated along with the effects of rapamycin, a specific inhibitor of mTOR and an immunosuppressant agent used clinically in transplant patients. In vitro experiments using an intestinal epithelial cell line and hypoxia/reoxygenation demonstrated that overexpression of p70S6K promoted cell growth and migration, and decreased cell apoptosis. Inhibition of p70S6K by rapamycin reversed these protective effects. In a mouse model of gut I/R, an increase of p70S6K activity was found by 5 min and remained elevated after 6 h of reperfusion. Inhibition of p70S6K by rapamycin worsened gut injury, promoted inflammation, and enhanced intestinal permeability. Importantly, rapamycin treated animals had a significantly increased mortality. These novel results demonstrate a key role of p70S6K in protection against I/R injury in the intestine and suggest a potential danger in using mTOR inhibitors in patients at risk for gut hypoperfusion

    Inhibition of ERK1/2 worsens intestinal ischemia/reperfusion injury.

    Get PDF
    The role of extracellular signal-regulated protein kinase (ERK) in intestinal ischemia/reperfusion (I/R) injury has not been well investigated. The aim of the current study was to examine the effect of inhibition of the ERK pathway in an in vitro and in vivo model of intestinal I/R injury.ERK1/2 activity was inhibited using the specific inhibitor, U0126, in intestinal epithelial cells under hypoxia/reoxygenation conditions and in mice subjected to 1 hour of intestinal ischemia followed by 6 hours reperfusion. In vitro, cell proliferation was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay, apoptosis by DNA fragmentation, and migration using an in vitro model of intestinal wound healing. Cells were also transfected with a p70S6K plasmid and the effects of overexpression similarly analyzed. In vivo, the effects of U0126 on intestinal cell proliferation and apoptosis, intestinal permeability, lung and intestinal neutrophil infiltration and injury, and plasma cytokine levels were measured. Survival was also assessed after U0126. Activity of p70S6 kinase (p70S6K) was measured by Western blot.In vitro, inhibition of ERK1/2 by U0126 significantly decreased cell proliferation and migration but enhanced cell apoptosis. Overexpression of p70S6K promoted cell proliferation and decreased cell apoptosis. In vivo, U0126 significantly increased cell apoptosis and decreased cell proliferation in the intestine, increased intestinal permeability, intestinal and lung neutrophil infiltration, and injury, as well as systemic pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β. Mortality was also significantly increased by U0126. Inhibition of ERK1/2 by U0126 also abolished activity of p70S6K both in vitro and in vivo models.Pharmacologic inhibition of ERK1/2 by U0126 worsens intestinal IR injury. The detrimental effects are mediated, at least in part, by inhibition of p70S6K, the major effector of mammalian target of rapamycin pathway

    Stimulation of p70S6K in vitro and in vivo and inhibition of p70S6K by rapamycin in vivo.

    No full text
    <p>A. Stimulation of p70S6K. Cells were cultured with FBS-free medium overnight under hypoxic conditions and then treated with 10% FBS for indicated time-points under normoxic conditions. Cells were harvested and expression of phosphorylated p70S6K (p-p70S6K) measured. The experiments were carried out triplicate. B. Stimulation of p70S6K by I/R in vivo. The superior mesenteric artery was occluded for 60 min then the intestine was harvested after indicated periods of reperfusion and Western blot analysis performed. C. Confirmation of increased p70S6K activity in intestinal epithelium by immunohistochemistry. Rapamycin or vehicle treated animals underwent intestinal I/R with 6 h of reperfusion. The intestinal tissue was harvested for immunohistochemical staining for p-p70S6K. D. Confirmation of the inhibition of p70S6K by rapamycin using Western blot. Animals were treated as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0041584#pone-0041584-g002" target="_blank">Figure 2C</a>. Intestinal tissues were harvested and Western blot analysis performed. For animal experiments, n = 5 mice per group.</p

    The effect of rapamycin on intestinal permeability.

    No full text
    <p>Rapamycin or vehicle was administered then intestinal I/R performed. Intestinal tissues were harvested for permeability using the ex-vivo isolated everted ileum sac method <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0041584#pone.0041584-Wattanasirichaigoon1" target="_blank">[64]</a>. Intestinal permeability was expressed as the mucosal-to-serosal clearance of FD4. Results are mean ± SEM, p<0.05 statistically significant, n = 5 mice per group.</p

    The effect of rapamycin on animal survival.

    No full text
    <p>Rapamycin or vehicle was administered then intestinal I/R performed. Animals were observed for 7 days. Survival was analyzed using the Mantel–Haenzel log rank test. P values <0.05 were considered significant. n = 10 mice per group. There was a significant decrease in survival in rapamycin treated animals (p<0.01).</p
    corecore