7 research outputs found

    Increased activation of the pregenual anterior cingulate cortex to citalopram challenge in migraine: an fMRI study

    Get PDF
    Background The anterior cingulate cortex (ACC) is a key structure of the pain processing network. Several structural and functional alterations of this brain area have been found in migraine. In addition, altered serotonergic neurotransmission has been repeatedly implicated in the pathophysiology of migraine, although the exact mechanism is not known. Thus, our aim was to investigate the relationship between acute increase of brain serotonin (5-HT) level and the activation changes of the ACC using pharmacological challenge MRI (phMRI) in migraine patients and healthy controls. Methods Twenty-seven pain-free healthy controls and six migraine without aura patients participated in the study. All participant attended to two phMRI sessions during which intravenous citalopram, a selective serotonin reuptake inhibitor (SSRI), or placebo (normal saline) was administered. We used region of interest analysis of ACC to compere the citalopram evoked activation changes of this area between patients and healthy participants. Results Significant difference in ACC activation was found between control and patient groups in the right pregenual ACC (pgACC) during and after citalopram infusion compared to placebo. The extracted time-series showed that pgACC activation increased in migraine patients compared to controls, especially in the first 8-10 min of citalopram infusion. Conclusions Our results demonstrate that a small increase in 5-HT levels can lead to increased phMRI signal in the pregenual part of the ACC that is involved in processing emotional aspects of pain. This increased sensitivity of the pgACC to increased 5-HT in migraine may contribute to recurring headache attacks and increased stress-sensitivity in migraine

    Spontaneous migraine attack causes alterations in default mode network connectivity

    Get PDF
    BACKGROUND: Although migraine is one of the most investigated neurologic disorders, we do not have a perfect neuroimaging biomarker for its pathophysiology. One option to improve our knowledge is to study resting-state functional connectivity in and out of headache pain. However, our understanding of the functional connectivity changes during spontaneous migraine attack is partial and incomplete. CASE PRESENTATION: Using resting-state functional magnetic resonance imaging we assessed a 24-year old woman affected by migraine without aura at two different times: during a spontaneous migraine attack and in interictal phase. Seed-to-voxel whole brain analysis was carried out using the posterior cingulate cortex as a seed, representing the default mode network (DMN). Our results showed decreased intrinsic connectivity within core regions of the DMN with an exception of a subsystem including the dorsal medial and superior frontal gyri, and the mid-temporal gyrus which is responsible for pain interpretation and control. In addition, increased connectivity between the DMN and pain and specific migraine-related areas, such as the pons and hypothalamus, developed during the spontaneous migraine attack. CONCLUSION: Our preliminary results provide further support for the hypothesis that alterations of the DMN functional connectivity during migraine headache may lead to maladaptive top-down modulation of migraine pain-related areas which might be a specific biomarker for migraine

    Hemisphaerialis dysgenesis okozta rezisztens epilepszia mûtéti kezelése – esetismertetés = Surgically cured resistant epilepsy - caused by hemispherical dysgenesis - case report

    No full text
    A part of patients with the therapy resistant epilepsy can be cured by surgical interventions. The more concordant the presurgical evaluation data, the better prognosis the patient has postoperatively. In case of discordant examination data, multimodal evaluation or case-specific decision might be successful. We report on a five-year-old boy with bilateral (left-dominated) cortical dysplasia and therapy resistant epilepsy. The ictal EEG did not help to localize the seizure onset zone, semiology had little lateralization value; however, FDG-PET showed left hemispheric hypermetabolism. The child became almost seizure-free and showed improved development after left-sided hemispherotomy

    Genetic and Environmental Effects on the Development of White Matter Hyperintensities in a Middle Age Twin Population

    No full text
    Introduction: White matter hyperintensities (WMH) indicate white matter brain lesions in magnetic resonance imaging (MRI), which can be used as a marker for brain aging and cerebrovascular and neurodegenerative disorders. Twin studies revealed substantial but not uniform WMH heritability in elderly twins. The objective of our study was to investigate the genetic and environmental components of WMH, as well as their importance in a healthy twin population, utilizing 3T MRI scanners in a middle-aged twin population. Methods: Brain MRI was performed on 120 healthy adult twins from the Hungarian Twin Registry on a 3T scanner (86 monozygotic, MZ and 34 dizygotic, DZ twins; median age 50 ± 26.5 years, 72.5% female and 27.5% male). The count of WMH on FLAIR images was calculated using an automated volumetry pipeline (volBrain) and human processing. The age- and sex-adjusted MZ and DZ intra-pair correlations were determined and the total variance was decomposed into genetic, shared and unique environmental components using structural equation modeling. Results: Age and sex-adjusted MZ intrapair correlations were higher than DZ correlations, indicating moderate genetic influence in each lesion (rMZ = 0.466, rDZ = −0.025 for total count; rMZ = 0.482, rDZ = 0.093 for deep white matter count; rMZ = 0.739, rDZ = 0.39 for infratentorial count; rMZ = 0.573, rDZ = 0.372 for cerebellar count and rMZ = 0.473, rDZ = 0.19 for periventricular count), indicating a moderate heritability (A = 40.3%, A = 45%, A = 72.7% and A = 55.5%and 47.2%, respectively). The rest of the variance was influenced by unique environmental effects (E between 27.3% and 59.7%, respectively). Conclusions: The number of WMH lesions is moderately influenced by genetic effects, particularly in the infratentorial region in middle-aged twins. These results suggest that the distribution of WMH in various brain regions is heterogeneous

    Heritability of Subcortical Grey Matter Structures

    No full text
    Background and Objectives: Subcortical grey matter structures play essential roles in cognitive, affective, social, and motoric functions in humans. Their volume changes with age, and decreased volumes have been linked with many neuropsychiatric disorders. The aim of our study was to examine the heritability of six subcortical brain volumes (the amygdala, caudate nucleus, pallidum, putamen, thalamus, and nucleus accumbens) and four general brain volumes (the total intra-cranial volume and the grey matter, white matter, and cerebrospinal fluid (CSF) volume) in twins. Materials and Methods: A total of 118 healthy adult twins from the Hungarian Twin Registry (86 monozygotic and 32 dizygotic; median age 50 ± 27 years) underwent brain magnetic resonance imaging. Two automated volumetry pipelines, Computational Anatomy Toolbox 12 (CAT12) and volBrain, were used to calculate the subcortical and general brain volumes from three-dimensional T1-weighted images. Age- and sex-adjusted monozygotic and dizygotic intra-pair correlations were calculated, and the univariate ACE model was applied. Pearson’s correlation test was used to compare the results obtained by the two pipelines. Results: The age- and sex-adjusted heritability estimates, using CAT12 for the amygdala, caudate nucleus, pallidum, putamen, and nucleus accumbens, were between 0.75 and 0.95. The thalamus volume was more strongly influenced by common environmental factors (C = 0.45−0.73). The heritability estimates, using volBrain, were between 0.69 and 0.92 for the nucleus accumbens, pallidum, putamen, right amygdala, and caudate nucleus. The left amygdala and thalamus were more strongly influenced by common environmental factors (C = 0.72−0.85). A strong correlation between CAT12 and volBrain (r = 0.74−0.94) was obtained for all volumes. Conclusions: The majority of examined subcortical volumes appeared to be strongly heritable. The thalamus was more strongly influenced by common environmental factors when investigated with both segmentation methods. Our results underline the importance of identifying the relevant genes responsible for variations in the subcortical structure volume and associated diseases

    Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials.

    No full text
    corecore