78 research outputs found

    Inherent Plasticity of Brown Adipogenesis in White Fat of Mice Allows for Recovery from Effects of Post-Natal Malnutrition

    Get PDF
    Interscapular brown adipose tissue (iBAT) is formed during fetal development and stable for the life span of the mouse. In addition, brown adipocytes also appear in white fat depots (wBAT) between 10 and 21 days of age in mice maintained at a room temperature of 23°C. However, this expression is transient. By 60 days of age the brown adipocytes have disappeared, but they can re-emerge if the adult mouse is exposed to the cold (5°C) or treated with β3-adrenergic agonists. Since the number of brown adipocytes that can be induced in white fat influences the capacity of the mouse to resist the obese state, we determined the effects of the nutritional conditions on post-natal development (birth to 21 days) of wBAT and its long-term effects on diet-induced obesity (DIO). Under-nutrition caused essentially complete suppression of wBAT in inguinal fat at 21 days of age, as indicated by expression of Ucp1 and genes of mitochondrial structure and function based upon microarray and qRT-PCR analysis, whereas over-nutrition had no discernible effects on wBAT induction. Surprisingly, the suppression of wBAT at 21 days of age did not affect DIO in adult mice maintained at 23°C, nor did it affect the reduction in obesity or cold tolerance when DIO mice were exposed to the cold at 5°C for one week. Gene expression analysis indicated that mice raised under conditions that suppressed wBAT at 21 days of age were able to normally induce wBAT as adults. Therefore, neither severe hypoleptinemia nor hypoinsulinemia during suckling permanently impaired brown adipogenesis in white fat. In addition, energy balance studies of DIO mice exposed to cold indicates that mice with reduced adipose stores preferentially increased food intake, whereas those with larger adipose tissue depots preferred to utilize energy from their adipose stores

    Expression Patterns of Protein Kinases Correlate with Gene Architecture and Evolutionary Rates

    Get PDF
    Protein kinase (PK) genes comprise the third largest superfamily that occupy ∼2% of the human genome. They encode regulatory enzymes that control a vast variety of cellular processes through phosphorylation of their protein substrates. Expression of PK genes is subject to complex transcriptional regulation which is not fully understood.Our comparative analysis demonstrates that genomic organization of regulatory PK genes differs from organization of other protein coding genes. PK genes occupy larger genomic loci, have longer introns, spacer regions, and encode larger proteins. The primary transcript length of PK genes, similar to other protein coding genes, inversely correlates with gene expression level and expression breadth, which is likely due to the necessity to reduce metabolic costs of transcription for abundant messages. On average, PK genes evolve slower than other protein coding genes. Breadth of PK expression negatively correlates with rate of non-synonymous substitutions in protein coding regions. This rate is lower for high expression and ubiquitous PKs, relative to low expression PKs, and correlates with divergence in untranslated regions. Conversely, rate of silent mutations is uniform in different PK groups, indicating that differing rates of non-synonymous substitutions reflect variations in selective pressure. Brain and testis employ a considerable number of tissue-specific PKs, indicating high complexity of phosphorylation-dependent regulatory network in these organs. There are considerable differences in genomic organization between PKs up-regulated in the testis and brain. PK genes up-regulated in the highly proliferative testicular tissue are fast evolving and small, with short introns and transcribed regions. In contrast, genes up-regulated in the minimally proliferative nervous tissue carry long introns, extended transcribed regions, and evolve slowly.PK genomic architecture, the size of gene functional domains and evolutionary rates correlate with the pattern of gene expression. Structure and evolutionary divergence of tissue-specific PK genes is related to the proliferative activity of the tissue where these genes are predominantly expressed. Our data provide evidence that physiological requirements for transcription intensity, ubiquitous expression, and tissue-specific regulation shape gene structure and affect rates of evolution

    Thromboembolic Disease in Patients With Cancer and COVID-19: Risk Factors, Prevention and Practical Thromboprophylaxis Recommendations–State-of-the-Art.

    Get PDF
    Cancer and COVID-19 are both well-established risk factors predisposing to thrombosis. Both disease entities are correlated with increased incidence of venous thrombotic events through multifaceted pathogenic mechanisms involving the interaction of cancer cells or SARS-CoV2 on the one hand and the coagulation system and endothelial cells on the other hand. Thromboprophylaxis is recommended for hospitalized patients with active cancer and high-risk outpatients with cancer receiving anticancer treatment. Universal thromboprophylaxis with a high prophylactic dose of low molecular weight heparins (LMWH) or therapeutic dose in select patients, is currentlyindicated for hospitalized patients with COVID-19. Also, prophylactic anticoagulation is recommended for outpatients with COVID-19 at high risk for thrombosis or disease worsening. However, whether there is an additive risk of thrombosis when a patient with cancer is infected with SARS-CoV2 remains unclear In the current review, we summarize and critically discuss the literature regarding the epidemiology of thrombotic events in patients with cancer and concomitant COVID-19, the thrombotic risk assessment, and the recommendations on thromboprophylaxis for this subgroup of patients. Current data do not support an additive thrombotic risk for patients with cancer and COVID-19. Of note, patients with cancer have less access to intensive care unit care, a setting associated with high thrombotic risk. Based on current evidence, patients with cancer and COVID-19 should be assessed with well-established risk assessment models for medically ill patients and receive thromboprophylaxis, preferentially with LMWH, according to existing recommendations. Prospective trials on well-characterized populations do not exist

    The US Program in Ground-Based Gravitational Wave Science: Contribution from the LIGO Laboratory

    Get PDF
    Recent gravitational-wave observations from the LIGO and Virgo observatories have brought a sense of great excitement to scientists and citizens the world over. Since September 2015,10 binary black hole coalescences and one binary neutron star coalescence have been observed. They have provided remarkable, revolutionary insight into the "gravitational Universe" and have greatly extended the field of multi-messenger astronomy. At present, Advanced LIGO can see binary black hole coalescences out to redshift 0.6 and binary neutron star coalescences to redshift 0.05. This probes only a very small fraction of the volume of the observable Universe. However, current technologies can be extended to construct "3rd Generation" (3G) gravitational-wave observatories that would extend our reach to the very edge of the observable Universe. The event rates over such a large volume would be in the hundreds of thousands per year (i.e. tens per hour). Such 3G detectors would have a 10-fold improvement in strain sensitivity over the current generation of instruments, yielding signal-to-noise ratios of 1000 for events like those already seen. Several concepts are being studied for which engineering studies and reliable cost estimates will be developed in the next 5 years

    Congress and public policy : a Source book of documents and reading/ Kozak

    No full text
    xviii, 522 hal. bib,; P. 25 cm

    Congress and public policy : a Source book of documents and reading/ Kozak

    No full text
    xviii, 522 hal. bib,; P. 25 cm

    Antioxidant Vitamins and Their Use in Preventing Cardiovascular Disease

    No full text
    Atherosclerosis remains one of the leading causes of death in Western populations. Subsequent to the discovery that oxidative stress plays a pivotal role in the development and progression of atherosclerosis, vitamins C and E, along with other antioxidants, were studied as potential therapies for the disease. However, while in vitro and in vivo studies showed promising antiatherogenic effects for vitamins C and E, clinical trials in which patients were given high doses of vitamin E or C showed no benefit and even possible harm. This review will attempt to summarize the known mechanistic data regarding the biochemical effects of vitamins C and E and their relevance to atherosclerosis, and offer an explanation for the failure of clinical trials to show that supplementation with these vitamins provides any benefit when given indiscriminately. We provide one example of how pharmacogenomics may be used to identify a sub-population which may indeed benefit from antioxidant supplementation
    • …
    corecore