861 research outputs found

    KIC 4150611: a rare multi-eclipsing quintuple with a hybrid pulsator

    Full text link
    We present the results of our analysis of KIC 4150611 (HD 181469) - an interesting, bright quintuple system that includes a hybrid ÎŽ\delta Sct/Îł\gamma Dor pulsator. Four periods of eclipses - 94.2, 8.65, 1.52 and 1.43 d - have been observed by the Kepler satellite, and three point sources (A, B, and C) are seen in high angular resolution images. From spectroscopic observations made with the HIDES spectrograph attached to the 1.88-m telescope of the Okayama Astrophysical Observatory (OAO), for the first time we calculated radial velocities (RVs) of the component B - a pair of G-type stars - and combined them with Kepler photometry in order to obtain absolute physical parameters of this pair. We also managed to directly measure RVs of the pulsator, also for the first time. Additionally, we modelled the light curves of the 1.52 and 1.43-day pairs, and measured their eclipse timing variations (ETVs). We also performed relative astrometry and photometry of three sources seen on the images taken with the NIRC2 camera of the Keck II telescope. Finally, we compared our results with theoretical isochrones. The brightest component Aa is the hybrid pulsator, transited every 94.2 days by a pair of K/M-type stars (Ab1+Ab2), which themselves form a 1.52-day eclipsing binary. The components Ba and Bb are late G-type stars, forming another eclipsing pair with a 8.65 day period. Their masses and radii are MBa=0.894±0.010M_{Ba}=0.894\pm0.010 M⊙_\odot, RBa=0.802±0.044R_{Ba}=0.802\pm0.044 R⊙_\odot for the primary, and MBb=0.888±0.010M_{Bb}=0.888\pm0.010 M⊙_\odot, RBb=0.856±0.038R_{Bb}=0.856\pm0.038 R⊙_\odot for the secondary. The remaining period of 1.43 days is possibly related to a faint third star C, which itself is most likely a background object. The system's properties are well-represented by a 35 Myr isochrone. There are also hints of additional bodies in the system.Comment: 14 pages, 15 figures, 7 tables, to appear in A&A, abstract modified in order to fit the arXiv limi

    Improvement of the homogeneity of magnetic field by the attenuation of a selected component with an open superconducting shield made of commercial tapes

    Get PDF
    Homogeneous magnetic fields are needed in many applications. The resolution of medical imaging techniques depends on the quality of the magnetic field, as does the efficiency of electron cooling systems used at particle accelerators. Current methods of improving homogeneity require complex arrangements of magnet windings. In this work, the application of commercial superconducting tapes for this purpose is analyzed experimentally and numerically. The shielding effect exhibited by the superconductors can be used to control the shape of the magnetic field. An open magnetic shield made of superconducting tapes is able to nullify the radial component of a solenoidal magnetic field, forming the long region of the homogeneous magnetic field. To form a shield, the superconducting tapes are wound on a former. Then, it is positioned coaxially inside an electromagnet. The measurements are performed in the DC magnetic field and at zero-field cooling conditions. A numerical model is developed to further analyze the magnetic field. New simplifications and proper constraints allow the use of an axial symmetry despite relatively complex geometry of the shields. Results from the simplified model and obtained experimentally are consistent. The decrease of radial component of the magnetic field and the significant improvement of its homogeneity are observed in a shielded region. The decrease of shielding quality with the increase of an applied magnetic field is observed. Empirical formulas describing the dependence of shielding quality on the geometry and the critical current of the shield are developed
    • 

    corecore