39 research outputs found

    The RNA Polymerase PB2 Subunit of Influenza A/HongKong/156/1997 (H5N1) Restrict the Replication of Reassortant Ribonucleoprotein Complexes

    Get PDF
    BACKGROUND: Genetic reassortment plays a critical role in the generation of pandemic strains of influenza virus. The influenza virus RNA polymerase, composed of PB1, PB2 and PA subunits, has been suggested to influence the efficiency of genetic reassortment. However, the role of the RNA polymerase in the genetic reassortment is not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Here, we reconstituted reassortant ribonucleoprotein (RNP) complexes, and demonstrated that the PB2 subunit of A/HongKong/156/1997 (H5N1) [HK PB2] dramatically reduced the synthesis of mRNA, cRNA and vRNA when introduced into the polymerase of other influenza strains of H1N1 or H3N2. The HK PB2 had no significant effect on the assembly of the polymerase trimeric complex, or on promoter binding activity or replication initiation activity in vitro. However, the HK PB2 was found to remarkably impair the accumulation of RNP. This impaired accumulation and activity of RNP was fully restored when four amino acids at position 108, 508, 524 and 627 of the HK PB2 were mutated. CONCLUSIONS/SIGNIFICANCE: Overall, we suggest that the PB2 subunit of influenza polymerase might play an important role for the replication of reassortant ribonucleoprotein complexes

    Cellular acidosis in rodents exposed to cadmium is caused by adaptation of the tissue rather than an early effect of toxicity

    Get PDF
    Proton (1H ) Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate the biochemical response of bank voles and wood mice (two wild rodent species that are frequently found on metal-contaminated sites) to chronic cadmium (Cd) insult. Similar effects, in terms of both metabolic changes (consistent with cellular acidosis) and induced metallothionin (MT) production were observed in all animals. These changes appeared to be an adaptation of the liver to toxic insult rather than onset of a toxic effect, and, in common with previous studies, were more marked in bank voles than wood mice in common with previous studies. This may have reflected the greater Cd intake and assimilation of the former but was not explained by differences in concentrations of free (non MT-bound) Cd; concentrations of which were negligible in voles and mice. Responses to Cd insult were detected in both species even though their bodies contained cadmium concentrations well below the World Health Organisation critical renal concentration of 200 μg/g dry weight
    corecore