8 research outputs found

    Narrow safety range of intraoperative rectal irradiation exposure volume for avoiding bleeding after seed implant brachytherapy

    Get PDF
    <p>Abstract</p> <p>Background & Purpose</p> <p>Rectal toxicity is less common after <sup>125</sup>I seed implant brachytherapy for prostate cancer, and intraoperative rectal dose-volume constraints (the constraint) is still undetermined in pioneering studies. As our constraint failed to prevent grade 2 or 3 rectal bleeding (bled-pts) in 5.1% of patients, we retrospectively explored another constraint for the prevention of rectal bleeding.</p> <p>Materials and methods</p> <p>The study population consisted of 197 patients treated with the brachytherapy as monotherapy using real-time intraoperative transrectal ultrasound (US)-guided treatment at a prescribed dose of 145 Gy. Post-implant dosimetry was performed on Day 1 and Day 30 after implantation using computed tomography (CT) imaging. Rectal bleeding toxicity was classified by CTC-AE ver. 3.0 during a mean 29-month (range, 12-48 months) period after implantation. The differences in rV100s were compared among intraoperative, Day 1 and Day 30 dosimetry, and between that of patients with grade 2 or 3 rectal bleeding (the bled-pts) and of the others (the spared-pts). All patients were divided into groups based on provisional rV100s that were increased stepwise in 0.1-cc increments from 0 to 1.0 cc. The difference in the ratios of the bled-pts to the spared-pts was tested by chi-square tests, and their odds ratios were calculated (bled-OR). All statistical analyses were performed by <it>t</it>-tests.</p> <p>Results</p> <p>The mean values of rV100us, rV100CT_1, and rV100CT_30 were 0.31 ± 0.43, 0.22 ± 0.36, and 0.59 ± 0.68 cc, respectively. These values temporarily decreased (p = 0.020) on Day 1 and increased (p = 0.000) on Day 30. There was no significant difference in rV100s between the bled-pts and spared-pts at any time of dosimetry. The maximum bled-OR was identified among patients with an rV100us value above 0.1 cc (p = 0.025; OR = 7.8; 95% CI, 1.4-145.8); an rV100CT_1 value above 0.3 cc (p = 0.014; OR = 16.2; 95% CI, 3.9-110.7), and an rV100CT_30 value above 0.5 cc (p = 0.019; OR = 6.3; 95% CI, 1.5-42.3).</p> <p>Conclusion</p> <p>By retrospective analysis exploring rV100 as intraoperative rectal dose-volume thresholds in <sup>125</sup>I seed implant brachytherapy for prostate cancer, it is proved that rV100 should be less than 0.1 cc for preventing rectal bleeding.</p

    Reduced-port surgery in gynecologic fields

    No full text
    Reduced-port surgery (RPS) is widely used for various abdominal surgeries. In this paper, we review RPS as it applies specifically to the field of obstetrics and gynecology with a view toward its usefulness and future prospects. Due to an advisory that was issued by the U.S. Food and Drug Administration in May 2014 sales of the Johnson & Johnson Morcellex devices were discontinued, as a result a great number of institutions are forced to seek alternative methods of morcellation. Thus, we also approach the question of specimen retrieval during myomectomy. When RPS, including single-port surgery, is performed by a competent surgeon for established indications, it is superior to conventional laparoscopic surgery in cosmetic outcome, and it can also reduce pain and shorten the hospital stay. Although ligature manipulations can be problematic, sealing devices are useful for performing total hysterectomy and adnexectomy without ligature. Furthermore, using a single-port technique when it is possible to extend the umbilical incision, manual tissue morcellation is facilitated

    Edaravone, a cytoprotective drug, enhances transgene expression mediated by lipoplexes in HepG2 cells and mice

    Get PDF
    A requirement of gene therapy is efficient nucleic acid delivery. However, the application of cationic liposomes to gene therapy is restricted by their inefficient transfection capacity, which may be caused by cytotoxicity. This cytotoxicity is highly dependent on cationic lipid-induced reactive oxygen species (ROS). Here, to provide cellular protection, we used edaravone, an efficacious anti-oxidative drug, to scavenge ROS during transfection using cationic liposome/plasmid DNA complexes (lipoplexes). Both free edaravone and edaravone-loaded liposomes (EDLPs) enhanced transgene expression in the human hepatoma cell line, HepG2, while EDLPs decreased the effective dose of edaravone. The cellular protective effect of edaravone was found to decrease the cytotoxicity of cationic liposomes. Edaravone was also effective in the commercial product, LipofectamineR 3000, which may expand the application of edaravone to promote transfection efficiency. Compared with free edaravone, EDLPs also showed superior transgene expression in mice. Our findings will promote the development of efficient and safe gene therapy
    corecore