45 research outputs found
Recommended from our members
Attenuation of hedgehog/GLI signaling by NT1721 extends survival in pancreatic cancer.
BackgroundPancreatic cancer is one of the most lethal malignancies due to frequent late diagnosis, aggressive tumor growth and metastasis formation. Continuously raising incidence rates of pancreatic cancer and a lack of significant improvement in survival rates over the past 30 years highlight the need for new therapeutic agents. Thus, new therapeutic agents and strategies are urgently needed to improve the outcome for patients with pancreatic cancer. Here, we evaluated the anti-tumor activity of a new natural product-based epidithiodiketopiperazine, NT1721, against pancreatic cancer.MethodsWe characterized the anticancer efficacy of NT1721 in multiple pancreatic cancer cell lines in vitro and in two orthotopic models. We also compared the effects of NT1721 to clinically used hedgehog inhibitors and the standard-of-care drug, gemcitabine. The effect of NT1721 on hedgehog/GLI signaling was assessed by determining the expression of GLI and GLI target genes both in vitro and in vivo.ResultsNT1721 displayed IC50 values in the submicromolar range in multiple pancreatic cancer cell lines, while largely sparing normal pancreatic epithelial cells. NT1721 attenuated hedgehog/GLI signaling through downregulation of GLI1/2 transcription factors and their downstream target genes, which reduced cell proliferation and invasion in vitro and significantly decreased tumor growth and liver metastasis in two preclinical orthotopic mouse models of pancreatic cancer. Importantly, treatment with NT1721 significantly improved survival times of mice with pancreatic cancer compared to the standard-of-care drug, gemcitabine.ConclusionsFavorable therapeutics properties, i.e. 10-fold lower IC50 values than clinically used hedgehog inhibitors (vismodegib, erismodegib), a 90% reduction in liver metastasis and significantly better survival times compared to the standard-of-care drug, gemcitabine, provide a rational for testing NT1721 in the clinic either as a single agent or possibly in combination with gemcitabine or other therapeutic agents in PDAC patients overexpressing GLI1/2. This could potentially result in promising new treatment options for patients suffering from this devastating disease
TRAF6 mediates human DNA2 polyubiquitination and nuclear localization to maintain nuclear genome integrity
The multifunctional human DNA2 (hDNA2) nuclease/helicase is required to process DNA ends for homology-directed recombination repair (HDR) and to counteract replication stress. To participate in these processes, hDNA2 must localize to the nucleus and be recruited to the replication or repair sites. However, because hDNA2 lacks the nuclear localization signal that is found in its yeast homolog, it is unclear how its migration into the nucleus is regulated during replication or in response to DNA damage. Here, we report that the E3 ligase TRAF6 binds to and mediates the K63-linked polyubiquitination of hDNA2, increasing the stability of hDNA2 and promoting its nuclear localization. Inhibiting TRAF6-mediated polyubiquitination abolishes the nuclear localization of hDNA2, consequently impairing DNA end resection and HDR. Thus, the current study reveals a mechanism for the regulation of hDNA2 localization and establishes that TRAF6-mediated hDNA2 ubiquitination activates DNA repair pathways to maintain nuclear genome integrity
8-chloro-adenosine activity in FLT3-ITD acute myeloid leukemia
Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD (+) MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.Peer reviewe
Recommended from our members
Attenuation of hedgehog/GLI signaling by NT1721 extends survival in pancreatic cancer.
BackgroundPancreatic cancer is one of the most lethal malignancies due to frequent late diagnosis, aggressive tumor growth and metastasis formation. Continuously raising incidence rates of pancreatic cancer and a lack of significant improvement in survival rates over the past 30 years highlight the need for new therapeutic agents. Thus, new therapeutic agents and strategies are urgently needed to improve the outcome for patients with pancreatic cancer. Here, we evaluated the anti-tumor activity of a new natural product-based epidithiodiketopiperazine, NT1721, against pancreatic cancer.MethodsWe characterized the anticancer efficacy of NT1721 in multiple pancreatic cancer cell lines in vitro and in two orthotopic models. We also compared the effects of NT1721 to clinically used hedgehog inhibitors and the standard-of-care drug, gemcitabine. The effect of NT1721 on hedgehog/GLI signaling was assessed by determining the expression of GLI and GLI target genes both in vitro and in vivo.ResultsNT1721 displayed IC50 values in the submicromolar range in multiple pancreatic cancer cell lines, while largely sparing normal pancreatic epithelial cells. NT1721 attenuated hedgehog/GLI signaling through downregulation of GLI1/2 transcription factors and their downstream target genes, which reduced cell proliferation and invasion in vitro and significantly decreased tumor growth and liver metastasis in two preclinical orthotopic mouse models of pancreatic cancer. Importantly, treatment with NT1721 significantly improved survival times of mice with pancreatic cancer compared to the standard-of-care drug, gemcitabine.ConclusionsFavorable therapeutics properties, i.e. 10-fold lower IC50 values than clinically used hedgehog inhibitors (vismodegib, erismodegib), a 90% reduction in liver metastasis and significantly better survival times compared to the standard-of-care drug, gemcitabine, provide a rational for testing NT1721 in the clinic either as a single agent or possibly in combination with gemcitabine or other therapeutic agents in PDAC patients overexpressing GLI1/2. This could potentially result in promising new treatment options for patients suffering from this devastating disease
Recommended from our members
NT1721, a novel epidithiodiketopiperazine, exhibits potent in vitro and in vivo efficacy against acute myeloid leukemia.
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by heterogeneous genetic and epigenetic changes in hematopoietic progenitors that lead to abnormal self-renewal and proliferation. Despite high initial remission rates, prognosis remains poor for most AML patients, especially for those harboring internal tandem duplication (ITD) mutations in the fms-related tyrosine kinase-3 (FLT3). Here, we report that a novel epidithiodiketopiperazine, NT1721, potently decreased the cell viability of FLT3-ITD+ AML cell lines, displaying IC50 values in the low nanomolar range, while leaving normal CD34+ bone marrow cells largely unaffected. The IC50 values for NT1721 were significantly lower than those for clinically used AML drugs (i.e. cytarabine, sorafenib) in all tested AML cell lines regardless of their FLT3 mutation status. Moreover, combinations of NT1721 with sorafenib or cytarabine showed better antileukemic effects than the single agents in vitro. Combining cytarabine with NT1721 also attenuated the cytarabine-induced FLT3 ligand surge that has been linked to resistance to tyrosine kinase inhibitors. Mechanistically, NT1721 depleted DNA methyltransferase 1 (DNMT1) protein levels, leading to the re-expression of silenced tumor suppressor genes and apoptosis induction. NT1721 concomitantly decreased the expression of EZH2 and BMI1, two genes that are associated with the maintenance of leukemic stem/progenitor cells. In a systemic FLT3-ITD+ AML mouse model, treatment with NT1721 reduced tumor burdens by > 95% compared to the control and significantly increased survival times. Taken together, our results suggest that NT1721 may represent a promising novel agent for the treatment of AML
Stat3 Activity Is Required for Gap Junctional Permeability in Normal Rat Liver Epithelial Cells
Neoplastic transformation by oncogenes such as activated Src is known to suppress gap junctional, intercellular communication (GJIC). One of the Src effector pathways leading to GJIC suppression and transformation is the Ras/Raf/Mek/Erk, so that inhibition of this pathway in vSrc-transformed cells restores GJIC. A distinct Src downstream effector required for neoplasia is the signal transducer and activator of transcription-3 (Stat3). To examine the role of Stat3 upon the Src-mediated, GJIC suppression, Stat3 was downregulated in rat liver epithelial cells expressing activated Src through treatment with the CPA7, Stat3 inhibitor, or through infection with a retroviral vector expressing a Stat3-specific shRNA. GJIC was examined by electroporating the fluorescent dye, Lucifer yellow, into cells grown on two coplanar electrodes of electrically conductive, optically transparent, indium-tin oxide, followed by observation of the migration of the dye to the adjacent, nonelectroporated cells under fluorescence illumination. The results demonstrate that, contrary to inhibition of the Ras pathway, Stat3 inhibition in cells expressing activated Src does not restore GJIC. On the contrary, Stat3 inhibition in normal cells with high GJIC levels eliminated junctional permeability. Therefore, Stat3's function is actually required for the maintenance of junctional permeability, although Stat3 generally promotes growth and in an activated form can act as an oncogene
Correction: Lin et al. Potent Anticancer Effects of Epidithiodiketopiperazine NT1721 in Cutaneous T Cell Lymphoma. Cancers 2021, 13, 3367.
There is an omission in the Institutional Review Board Statement and Conflict of Interest statements of the paper [...]