11 research outputs found

    Data-driven malaria prevalence prediction in large densely populated urban holoendemic sub-Saharan West Africa

    Get PDF
    Over 200 million malaria cases globally lead to half-million deaths annually. The development of malaria prevalence prediction systems to support malaria care pathways has been hindered by lack of data, a tendency towards universal "monolithic" models (one-size-fits-all-regions) and a focus on long lead time predictions. Current systems do not provide short-term local predictions at an accuracy suitable for deployment in clinical practice. Here we show a data-driven approach that reliably produces one-month-ahead prevalence prediction within a densely populated all-year-round malaria metropolis of over 3.5 million inhabitants situated in Nigeria which has one of the largest global burdens of P. falciparum malaria. We estimate one-month-ahead prevalence in a unique 22-years prospective regional dataset of > 9 × 10^{4} participants attending our healthcare services. Our system agrees with both magnitude and direction of the prediction on validation data achieving MAE ≤ 6 × 10^{-2}, MSE ≤ 7 × 10^{-3}, PCC (median 0.63, IQR 0.3) and with more than 80% of estimates within a (+ 0.1 to - 0.05) error-tolerance range which is clinically relevant for decision-support in our holoendemic setting. Our data-driven approach could facilitate healthcare systems to harness their own data to support local malaria care pathways

    Severe childhood malaria syndromes defined by plasma proteome profiles

    Get PDF
    BACKGROUND Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore it is important to understand the pathology underlying the development of CM and SMA, as opposed to uncomplicated malaria (UM). Different host responses to infection are likely to be reflected in plasma proteome-patterns that associate with clinical status and therefore provide indicators of the pathogenesis of these syndromes. METHODS AND FINDINGS Plasma and comprehensive clinical data for discovery and validation cohorts were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, an urban and densely populated holoendemic malaria area in Nigeria. A total of 946 children participated in this study. Plasma was subjected to high-throughput proteomic profiling. Statistical pattern-recognition methods were used to find proteome-patterns that defined disease groups. Plasma proteome-patterns accurately distinguished children with CM and with SMA from those with UM, and from healthy or severely ill malaria-negative children. CONCLUSIONS We report that an accurate definition of the major childhood malaria syndromes can be achieved using plasma proteome-patterns. Our proteomic data can be exploited to understand the pathogenesis of the different childhood severe malaria syndromes

    Circulatory hepcidin is associated with the anti-inflammatory response but not with iron or anemic status in childhood malaria

    No full text
    Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore, it is important to understand the pathology underlying the development of CM and SMA as opposed to uncomplicated malaria (UM). Increased levels of hepcidin have been associated with UM, but its level and role in severe malarial disease remains to be investigated. Plasma and clinical data were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, Nigeria. Here, we report that hepcidin levels are lower in children with SMA or CM than in those with milder outcome (UM). While different profiles of pro- and anti-inflammatory cytokines were observed between the malaria syndromes, circulatory hepcidin levels remained associated with the levels of its regulatory cytokine interleukin-6 and of the anti-inflammatory cytokine inerleukin-10, irrespective of iron status, anemic status, and general acute-phase response. We propose a role for hepcidin in anti-inflammatory processes in childhood malaria

    Visualization of (a-c) disease control (DC, non-parasitemic) children <i>versus</i> parasitemic children groups; (d-f) among CM, SMA and UM parasitaemic children groups.

    No full text
    <p>Each sphere represents an individual child proteome profile plotted in 3D space defined by the first three principal components. CM = Cerebral Malaria (red); SMA = Severe Malarial Anemia (purple); UM = Uncomplicated Malaria (yellow); DC = Disease Controls (blue). (a.) DC vs. CM; (b.) DC vs. SMA; (c.) DC vs. UM; (d.) CM vs. SMA; (e.) CM vs. UM and (f.) SMA vs. UM.</p

    Discriminatory performance of proteome profiles across study groups in ROC space.

    No full text
    <p>CM = Cerebral Malaria; SMA = Severe Malarial Anemia; UM = Uncomplicated Malaria; DC = Disease Controls; CC = Community Controls. (a.) Discriminatory performance in ROC space of predictive models built with relevant m/z clusters using the discovery cohort data. Error bars indicate +/− standard deviations obtained by 100 train/test randomizations of the data. (b.) Discriminatory performance in ROC space of the best predictive model from (a.) when applied to the validation cohort data.</p

    Discriminatory accuracy of proteome profiles across six anionic plasma fractions (f1 to f6) among CM, SMA and UM (all parasitemic) groups of children.

    No full text
    <p>CM = Cerebral Malaria; SMA = Severe Malarial Anemia; UM = Uncomplicated Malaria. f1 to f6 represent anionic plasma fractions at pH 9.0 (f1), pH 7.0 (f2), pH 5.0 (f3), pH 4.0 (f4), pH 3.0 (f5) and organic phase (f6). In brackets are shown the number of relevant m/z clusters that make up the discriminatory proteome profile. (a.) CM vs. SMA; (b.) CM vs. UM; (c.) SMA vs. UM.</p

    Visualization of community control (CC, non-parasitaemic) children <i>versus</i> other study groups.

    No full text
    <p>Each sphere represents an individual child proteome profile plotted in 3D space defined by the first three principal components. CM = Cerebral Malaria (red); SMA = Severe Malarial Anemia (purple); UM = Uncomplicated Malaria (yellow); DC = Disease Controls (blue); CC = Community Controls (green). (a.) CC vs. CM; (b.) CC vs. SMA; (c.) CC vs UM and (d.) CC vs. DC.</p
    corecore