117 research outputs found

    Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition

    Get PDF
    RIG-I is a viral RNA sensor that induces the production of type I interferon (IFN) in response to infection with a variety of viruses. Modification of RIG-I with K63-linked poly-ubiquitin chains, synthesised by TRIM25, is crucial for activation of the RIG-I/MAVS signalling pathway. TRIM25 activity is targeted by influenza A virus non-structural protein 1 (NS1) to suppress IFN production and prevent an efficient host immune response. Here we present structures of the human TRIM25 coiled-coil-PRYSPRY module and of complexes between the TRIM25 coiled-coil domain and NS1. These structures show that binding of NS1 interferes with the correct positioning of the PRYSPRY domain of TRIM25 required for substrate ubiquitination and provide a mechanistic explanation for how NS1 suppresses RIG-I ubiquitination and hence downstream signalling. In contrast, the formation of unanchored K63-linked poly-ubiquitin chains is unchanged by NS1 binding, indicating that RING dimerisation of TRIM25 is not affected by NS1

    Sphinx measurements of the 2009 solar minimum x-ray emission

    Get PDF
    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 x 10^47 cm^-3 and 1.1 x 10^48 cm^-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.Comment: Astrophysical Journal, in press. 14 pp, 3 figure

    X-raying hot plasma in solar active regions with the SphinX spectrometer

    Full text link
    The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board CORONAS-PHOTON mission is sensitive to X-ray emission well above 1 keV and provides the opportunity to detect the hot plasma component. We analyzed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistics and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 x 10^44 cm^-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present both at high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss a possible non-thermal origin (compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.Comment: 6 pages, 5 figures. Accepted for publication in A&

    SphinX soft X-ray spectrophotometer: Science objectives, design and performance

    Get PDF
    The goals and construction details of a new design Polish-led X-ray spectrophotometer are described. The instrument is aimed to observe emission from entire solar corona and is placed as a separate block within the Russian TESIS X- and EUV complex aboard the CORONAS-PHOTON solar orbiting observatory. SphinX uses silicon PIN diode detectors for high time resolution measurements of the solar spectra in the range 0.8–15 keV. Its spectral resolution allows for discerning more than hundred separate energy bands in this range. The instrument dynamic range extends two orders of magnitude below and above these representative for GOES. The relative and absolute accuracy of spectral measurements is expected to be better than few percent, as follows from extensive ground laboratory calibrations

    SphinX: The Solar Photometer in X-Rays

    Get PDF
    Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈ 1 - 15 keV with resolution ≈ 0.4 keV. SphinX was flown on the Russian CORONAS-PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed

    Yeast two-hybrid junk sequences contain selected linear motifs

    Get PDF
    Yeast two-hybrid (Y2H) screenings result in identification of many out-of-frame (OOF) clones that code for short (2-100 amino acids) peptides with no sequence homology to known proteins. We hypothesize that these peptides can reveal common short linear motifs (SLiMs) responsible for their selection. We present a new protocol to address this issue, using an existing SLIM detector (TEIRESIAS) as a base method, and applying filters derived from a mathematical model of SLiM selection in OOF clones. The model allows for initial analysis of likely presence of SLiM(s) in a collection of OOF sequences, assisting investigators with the decision of whether to invest resources in further analysis. If SLiM presence is detected, it estimates the length and number of amino acid residues involved in binding specificity and the amount of noise in the Y2H screen. We demonstrate that our model can double the prediction sensitivity of TEIRESIAS and improve its specificity from 0 to 1.0 on simulated data and apply the model to seven sets of experimentally derived OOF clones. Finally, we experimentally validate one SLiM found by our method, demonstrating its utility

    Comparative structural and functional analysis of Bunyavirus and Arenavirus cap-snatching Endonucleases

    Get PDF
    Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5′ end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase

    Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel

    Get PDF
    Pre-ribosomal particles evolve in the nucleus through transient interaction with biogenesis factors, before export to the cytoplasm. Here, we report the architecture of the late pre-60S particle purified from Saccharomyces cerevisiae through Arx1, a nuclear export factor with structural homology to methionine aminopeptidases, or its binding partner Alb1. Cryo-electron microscopy reconstruction of the Arx1-particle at 11.9 Å resolution reveals regions of extra densities on the pre-60S particle attributed to associated biogenesis factors, confirming the immature state of the nascent subunit. One of these densities could be unambiguously assigned to Arx1. Immuno-electron microscopy and UV cross-linking localize Arx1 close to the ribosomal exit tunnel in direct contact with ES27, a highly dynamic eukaryotic rRNA expansion segment. The binding of Arx1 at the exit tunnel may position this export factor to prevent premature recruitment of ribosome-associated factors active during translation
    corecore