86 research outputs found

    Calibration of photomultiplier arrays

    Get PDF
    A method is described that allows calibration and assessment of the linearity of response of an array of photomultiplier tubes. The method does not require knowledge of the photomultiplier single photoelectron response model and uses science data directly, thus eliminating the need for dedicated data sets. In this manner all photomultiplier working conditions (e.g. temperature, external fields, etc.) are exactly matched between calibration and science acquisitions. This is of particular importance in low background experiments such as ZEPLIN-III, where methods involving the use of external light sources for calibration are severely constrained

    Limits on the spin-dependent WIMP-nucleon cross-sections from the first science run of the ZEPLIN-III experiment

    Get PDF
    We present new experimental constraints on the WIMP-nucleon spin-dependent elastic cross-sections using data from the first science run of ZEPLIN-III, a two-phase xenon experiment searching for galactic dark matter WIMPs based at the Boulby mine. Analysis of \sim450 kg\cdotdays fiducial exposure revealed a most likely signal of zero events, leading to a 90%-confidence upper limit on the pure WIMP-neutron cross-section of σn=1.8×102\sigma_n=1.8\times 10^{-2} pb at 55 GeV/c2c^2 WIMP mass. Recent calculations of the nuclear spin structure based on the Bonn CD nucleon-nucleon potential were used for the odd-neutron isotopes 129^{129}Xe and 131^{131}Xe. These indicate that the sensitivity of xenon targets to the spin-dependent WIMP-proton interaction is much lower than implied by previous calculations, whereas the WIMP-neutron sensitivity is impaired only by a factor of \sim2

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as shielding, and would be observed either through their a(s)γγa(s)\to\gamma \gamma decay in the rest of the HCAL detector or as events with large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10112.84\times10^{11} electrons on target allowing to set new limits on the a(s)γγa(s)\gamma\gamma-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys. Rev. Let

    Measurement and simulation of the muon-induced neutron yield in lead

    Get PDF
    A measurement is presented of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (w.e.) and a mean muon energy of 260 GeV. The measurement exploits the delayed coincidences between muons and the radiative capture of induced neutrons in a highly segmented tonne scale plastic scintillator detector. Detailed Monte Carlo simulations reproduce well the measured capture times and multiplicities and, within the dynamic range of the instrumentation, the spectrum of energy deposits. By comparing measurements with simulations of neutron capture rates a neutron yield in lead of (View the MathML source) ×10-3 neutrons/muon/(g/cm2) has been obtained. Absolute agreement between simulation and data is of order 25%. Consequences for deep underground rare event searches are discussed

    Improved exclusion limit for light dark matter from e+e- annihilation in NA64

    Get PDF
    The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson A′ were set by the NA64 experiment for the mass region mA′≲250 MeV, by analyzing data from the interaction of 2.84×1011 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including A′ production via secondary positron annihilation with atomic electrons, we extend these limits in the 200-300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e+ beam efforts

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as a shield, and would be observed either through their a(s)→γγ decay in the rest of the HCAL detector, or as events with a large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing of the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10^{11} electrons on target, allowing us to set new limits on the a(s)γγ-coupling strength for a(s) masses below 55 MeV

    ZE3RA: The ZEPLIN-III Reduction and Analysis package

    Get PDF
    ZE3RA is the software package responsible for processing the raw data from the ZEPLIN-III dark matter experiment and its reduction into a set of parameters used in all subsequent analyses. The detector is a liquid xenon time projection chamber with scintillation and electroluminescence signals read out by an array of 31 photomultipliers. The dual range 62-channel data stream is optimised for the detection of scintillation pulses down to a single photoelectron and of ionisation signals as small as those produced by single electrons. We discuss in particular several strategies related to data filtering, pulse finding and pulse clustering which are tuned using calibration data to recover the best electron/nuclear recoil discrimination near the detection threshold, where most dark matter elastic scattering signatures are expected. The software was designed assuming only minimal knowledge of the physics underlying the detection principle, allowing an unbiased analysis of the experimental results and easy extension to other detectors with similar requirements. ©2011 IOP Publishing Ltd and SISSA

    Search for pseudoscalar bosons decaying into e+e- pairs in the NA64 experiment at the CERN SPS

    Get PDF
    We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e+e- performed using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e+e- pairs in the nuclear transitions of Be8 and He4 nuclei at the invariant mass ≃17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the "visible mode"configuration with a total statistics corresponding to 8.4×1010 electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter ϵ we also used the data collected in 2016-2018 in the "invisible mode"configuration of NA64 with a total statistics corresponding to 2.84×1011 EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to γ). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space ma-ϵ in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of ϵ in the range 2.1×10-4<ϵ<3.2×10-4 are excluded

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas

    Search for a Hypothetical 16.7 MeV Gauge Boson and Dark Photons in the NA64 Experiment at CERN

    Get PDF
    We report the first results on a direct search for a new 16.7 MeV boson ( X ) which could explain the anomalous excess of e + e − pairs observed in the excited 8 Be ∗ nucleus decays. Because of its coupling to electrons, the X could be produced in the bremsstrahlung reaction e − Z → e − Z X by a 100 GeV e − beam incident on an active target in the NA64 experiment at the CERN Super Proton Synchrotron and observed through the subsequent decay into a e + e − pair. With 5.4 × 10 10 electrons on target, no evidence for such decays was found, allowing us to set first limits on the X − e − coupling in the range 1.3 × 10 − 4 ≲ ε e ≲ 4.2 × 10 − 4 excluding part of the allowed parameter space. We also set new bounds on the mixing strength of photons with dark photons ( A ′ ) from nonobservation of the decay A ′ → e + e − of the bremsstrahlung A ′ with a mass ≲ 23     Me
    corecore