91 research outputs found

    Two ReCA Domains Comprise a Minimal Functional Unit of the Human BlM Helicase

    Get PDF

    Finite element approximation of the linear stochastic wave equation with additive noise

    Get PDF
    Semidiscrete finite element approximation of the linear stochastic wave equation (LSWE) with additive noise is studied in a semigroup framework. Optimal error estimates for the deterministic problem are obtained under minimal regularity assumptions. These are used to prove strong convergence estimates for the stochastic problem. The theory presented here applies to multidimensional domains and spatially correlated noise. Numerical examples illustrate the theory

    Mechanism of DNA-Dependent Enzymatic Activation of E. Coli RecQ Helicase

    Get PDF

    Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise

    Get PDF
    We investigate the quality of space approximation of a class of stochastic integral equations of convolution type with Gaussian noise. Such equations arise, for example, when considering mild solutions of stochastic fractional order partial differential equations but also when considering mild solutions of classical stochastic partial differential equations. The key requirement for the equations is a smoothing property of the deterministic evolution operator which is typical in parabolic type problems. We show that if one has access to nonsmooth data estimates for the deterministic error operator together with its derivative of a space discretization procedure, then one obtains error estimates in pathwise H\uf6lder norms with rates that can be read off the deterministic error rates. We illustrate the main result by considering a class of stochastic fractional order partial differential equations and space approximations performed by spectral Galerkin methods and finite elements. We also improve an existing result on the stochastic heat equation

    Numerical solution of fractional elliptic stochastic PDEs with spatial white noise

    Get PDF
    The numerical approximation of solutions to stochastic partial differential equations with additive spatial white noise on bounded domains in R-d is considered. The differential operator is given by the fractional power L-beta, beta is an element of (0, 1) of an integer-order elliptic differential operator L and is therefore nonlocal. Its inverse L-beta is represented by a Bochner integral from the Dunford-Taylor functional calculus. By applying a quadrature formula to this integral representation the inverse fractional-order operator L-beta is approximated by a weighted sum of nonfractional resolvents (I + exp(2yl)L)(-1) at certain quadrature nodes t(j) > 0. The resolvents are then discretized in space by a standard finite element method. This approach is combined with an approximation of the white noise, which is based only on the mass matrix of the finite element discretization. In this way an efficient numerical algorithm for computing samples of the approximate solution is obtained. For the resulting approximation the strong mean-square error is analyzed and an explicit rate of convergence is derived. Numerical experiments for L = kappa(2) - Delta, kappa > 0 with homogeneous Dirichlet boundary conditions on the unit cube (0, 1)(d) in d = 1, 2, 3 spatial dimensions for varying beta is an element of (0, 1) attest to the theoretical results
    • …
    corecore