
Some approximation results for mild solutions of stochastic fractional order
evolution equations driven by Gaussian noise

Downloaded from: https://research.chalmers.se, 2022-07-02 09:42 UTC

Citation for the original published paper (version of record):
Fahim, K., Hausenblas, E., Kovacs, M. (2022). Some approximation results for mild solutions of
stochastic fractional order evolution
equations driven by Gaussian noise. Stochastics and Partial Differential Equations: Analysis and
Computations, In Press. http://dx.doi.org/10.1007/s40072-022-00250-0

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Stoch PDE: Anal Comp
https://doi.org/10.1007/s40072-022-00250-0

Some approximation results for mild solutions of stochastic
fractional order evolution equations driven by Gaussian
noise

K. Fahim1 · E. Hausenblas2 ·M. Kovács3,4,5

Received: 3 March 2021 / Revised: 22 December 2021 / Accepted: 17 March 2022
© The Author(s) 2022

Abstract
We investigate the quality of space approximation of a class of stochastic integral
equations of convolution type with Gaussian noise. Such equations arise, for exam-
ple, when considering mild solutions of stochastic fractional order partial differential
equations but also when considering mild solutions of classical stochastic partial dif-
ferential equations. The key requirement for the equations is a smoothing property
of the deterministic evolution operator which is typical in parabolic type problems.
We show that if one has access to nonsmooth data estimates for the deterministic
error operator together with its derivative of a space discretization procedure, then
one obtains error estimates in pathwise Hölder norms with rates that can be read off
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the deterministic error rates. We illustrate the main result by considering a class of
stochastic fractional order partial differential equations and space approximations per-
formed by spectral Galerkin methods and finite elements. We also improve an existing
result on the stochastic heat equation.

Keywords Stochastic partial differential equation · Stochastic integro-differential
equation · Wiener process · Fractal Wiener process · Stochastic Volterra equation ·
Finite element method · Spectral Galerkin method · Fractional partial differential
equation

Mathematics Subject Classification 45D05 · 60H15 · 60H20 · 60G22 · 65L03

1 Introduction

Let H be a real separable Hilbert space and let WH be a H -cylindrical Wiener pro-
cess on a complete, filtered probability space (�,F , (Ft )t≥0, P) with respect to the
filtration (Ft )t≥0. To be more precise, we assume that (Ft )t≥0 satisfies the usual con-
ditions, which are, (Ft )t≥0 is right-continuous and F0 contains all P-nullsets of F .
Let Hi , i = 0, 1, 2 be real separable Hilbert spaces to be specified later on but they are
typically associated with fractional powers of a linear operator. We consider integral
equations of the form

U (t) = X0(t) +
∫ t

0
S2(t − s)F(s,U (s)) ds +

∫ t

0
S1(t − s)G(s,U (s)) dWH (s).

(1)

Here, the non-linear functions G : [0, T ] × H0 → LHS(H , H1), where LHS(H , H1)

denotes the space of Hilbert-Schmidt operators form H to H1, and F : [0, T ]×H0 →
H2 are assumed to satisfy global Lipschitz and linear growth conditions. The operator
families Si (t) : Hi → H0, i = 1, 2, are assumed to admit certain smoothing estimates
for t > 0.

A typical example where the integral Eq. (1) arises is when defining mild solutions
of fractional order equations of the form [23],

U (t) = U0 + tU1 − A
∫ t

0

(t − s)α−1

�(α)
U (s) ds

+
∫ t

0

(t − s)κ−1

�(κ)
F(s,U (s)) ds

+
∫ t

0

(t − s)β−1

�(β)
G(s,U (s)) dWH (s); t ∈ [0, T ],

(2)

see Sect. 3.1 for more details. Here, A is a densely defined, possibly unbounded,
non-negative operator on the Hilbert space H0, α ∈ (0, 2), β > 1

2 and κ > 0. The
restriction β > 1

2 is needed otherwise the stochastic integral does not make sense even
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for constant G as for β ≤ 1
2 the function t → tβ−1 is not square integrable on [0, T ].

For α ∈ (0, 1) (and U1 = 0 in this case), Eq. (2) becomes a fractional stochastic heat
equation, for α ∈ (1, 2) Eq. (2) becomes a fractional stochastic wave equation.

Time fractional stochastic heat type equations might be used to model phenomena
with random effects with thermal memory [48]. In its simplest form, the fractional
stochastic heat equation has the form

dU + AD1−α
t (U )dt = F(U )dt + G(U )dWH (t); U (0) = U0, α ∈ (0, 1), (3)

where

D1−α
t (U )(t) = 1

�(α)

d

dt

∫ t

0
(t − s)α−1U (s) ds, α ∈ (0, 1).

Eq. (3) corresponds to (2) with β = κ = 1, α ∈ (0, 1) and U1 = 0.
Time fractional stochastic wave type equations may be used to model random forc-

ing effects in viscoelastic materials which exhibit a simple power-law creep behaviour
[13, 38]. The simplest form of the fractional stochastic wave equation takes the form

dU + AI α−1(U )dt = U1dt + F(U )dt + G(U )dWH (t); U (0) = U0, α ∈ (1, 2),

(4)

where

I α−1(U )(t) = 1

�(α − 1)

∫ t

0
(t − s)α−2U (s) ds, α > 1,

and U1 is the initial data for U̇ . Equation (4) corresponds to (2) with β = κ = 1 and
α ∈ (1, 2).

In both cases the parameters β and κ can be used to model the time-regularity of
the stochastic, respectively, the deterministic feedback. For example, when β < 1,
then the driving process is rougher than the Wiener process, while if β > 1, it is
smoother. It is important to note that while the parameter choice in (2) corresponding
to α = β = κ = 1 is the standard stochastic heat equation, the parameter choice
β = κ = 1 and α = 2 does not result in the standard stochastic wave equation but in
something much more irregular as in this case the noise will drive U̇ and not Ü . The
standard stochastic wave equation would correspond to the choice β = κ = 2 and
α = 2. This case is not covered by our paper, since in our setting crucial estimates
has constants blowing up as α → 2. In particular, the constants in the fundamental
regularity estimates (20) and (21) will blow up, and therefore we cannot say anything
for the limiting case α = 2 by taking α → 2.

Our aim is to approximate stochastic integro-differential equations of the type (1)
and derive error estimates in pathwise Hölder norms in time. To this end we consider
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approximations of (1) given by the following integral equation

Un(t) = X0
n(t) +

∫ t

0
S2n (t − s)F(s,Un(s)) ds +

∫ t

0
S1n(t − s)G(s,Un(s)) dWH (s).

Here, the approximation Un can typically be a spatial approximation derived via a
spectral Galerkin or a continuous finite element method. The main purpose of our
work is to derive rates of convergence of the strong error over Cγ ([0, T ]; H0); that is,
we derive error estimates for U −Un in L p(�;Cγ ([0, T ]; H0)). Here, for a function
f : [0, T ] → E , where E is a Banach space, the Hölder seminorm is defined by

‖ f ‖Cγ ([0,T ];E) = sup
t,s∈[0,T ]
t �=s

‖ f (t) − f (s)‖E
|t − s|γ , γ ∈ (0, 1).

In particular, we derive a rate of convergence of the strong error over C([0, T ]; H0)

(the space of H0-valued continuous functions on [0, T ] equipped with the supremum
norm); that is, an error estimate forU −Un in L p(�;C([0, T ]; H0)). These error esti-
mates are derived given that one has access to deterministic nonsmooth error estimates
for Si − Sin and d

dt (S
i − Sin). The main point is that the rate of convergence in these

norms can be directly read off the deterministic error rates. While traditionally error
estimates for d

dt (S
i −Sin) are seldom considered they are not out of reach inmany cases

(see, for example, [55,Theorem 3.4], for finite elements for parabolic problems). We
demonstrate by two examples how to obtain such estimates for fractional order equa-
tions both for spectral Galerkin and for a standard continuous finite element method.
In general, when Si are resolvent families for certain parabolic integro-differential
problems arising, for example, in viscoelasticity, [3, 13, 38, 52], these nonsmooth data
estimates are direct consequences of the smoothing property of the resolvent family
of the linear deterministic problem, at least for the spectral Galerkin method.

Our motivation for considering estimates in such norms is twofold. Firstly, esti-
mates with respect to the L p(�;C([0, T ]; H0))-norm are useful for using standard
localization arguments [29, 51] in order to extend approximation results for equations
with globally Lipschitz continuous nonlinearities to results for equations with nonlin-
earities that are only Lipschitz continuous on bounded sets. We refer to [18,Section
4] for further details in the semigroup case. Secondly, as Remark 2.10 shows, the pro-
cesses U and Un can be viewed as random variables in L p(�;Cγ ([0, T ]; H0)) and
therefore it natural to consider the approximation error in the corresponding norm.
For further applications of approximations in Hölder norms we refer to [18] and [4].

Finally, we would like to emphasize that the derivation of error estimates in the
L p(�;C([0, T ]; H0))-norm is usually a nontrivial task even when the operator family
S1 is a semigroup. This is because, in general, the stochastic convolution appearing
in (1) fails to be a semimartingale and hence Doob’s maximal inequality cannot be
applied to obtain estimates with respect to the L p(�;C([0, T ]; H0))-norm. In case
the operator family S1 is a semigroup one may employ the factorization method of Da
Prato, Kwapien and Zabczyk [12] directly to obtain such estimates, for an instance,
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see, for example, [37]. However, when the semigroup property does not hold; that is,
there is a nontrivial memory effect in the equation, then even this approach fails.

The state of the art

For analytical results, such as existence, uniqueness and regularity of various stochastic
Volterra-type integro-differential equations driven by Wiener noise we refer to [3, 5,
8–10, 13, 14, 32–34] and for results concerning asymptotic behaviour of solutions to
[7, 24]. The particular case of fractional order equations driven by Wiener noise are
considered in [11, 21–23, 35, 43, 48]. Various integro-differential equations driven
by Lévy noise are analysed in [20, 30] with the particular case of fractional order
equations in [6]. Finally a class of linear Volterra integro-differential equations driven
by fractional Brownian motion are investigated in [53, 54].

Themain purpose of ourwork is to derive rates of convergence for space approxima-
tions. Here, we consider the strong error over Cγ ([0, T ]; H0) and C([0, T ]; H0), that
is, we derive error estimates in L p(�;Cγ ([0, T ]; H0)) and L p(�;C([0, T ]; H0)).
To our knowledge all existing work on the numerical analysis of stochastic fractional
order differential equations are considering a much weaker error measure; that is, the
error measure supt∈[0,T ] E‖U (t) − Un(t)‖p

H0
(mainly for p = 2), see, for example,

[26, 27, 31, 38, 40, 56], or the weak error [1, 31, 39, 41]. For similar works in the
setting of abstract evolution equations without memory kernel we refer to [16, 17],
and [18].

The structure of the paper

The paper is organized as follows. In Sect. 2 we introduce the abstract setting
and the assumptions which we will use. Here we illustrate the applicability of our
setting by several examples. In Lemma 2.9 we state and prove a basic existence
and uniqueness result for the solution of (1) and specify the time-regularity of the
solution in Remark 2.10. Our main abstract approximation result estimating the dif-
ference U − Un in L p(�;Cγ ([0, T ]; H0)) is contained in Theorem 2.11 while in
L p(�;C([0, T ]; H0)) in Corollary 2.12. In Sect. 3 we apply Theorem 2.11 and Corol-
lary 2.12 to two typical space discretization schemes. In particular, in Subsection 3.1
we consider the general fractional-order Eq. (2) (with time-independent coefficients,
for simplicity) and its spectral Galerkin approximation and apply Theorem 2.11 and
Corollary 2.12 to obtain rates of convergence depending on the parameters in the
equation. In Examples 3.6, 3.7, and 3.8 we state the results in some simplified settings
for the stochastic heat equation, the fractional stochastic heat and wave equations,
respectively. In Subsection 3.2 we consider a fractional stochastic wave equation and
its finite element approximation and apply Theorem 2.11 and Corollary 2.12 again
to obtain rates of convergence. Here, in Remark 3.13, we point out in which way the
stochastic heat equation fits in our abstract framework and we also show that using the
setup of the paper one may remove some unnecessary smoothness assumption on G
which was present in [16,Proposition 4.2]. Finally, in Sect. 4, we present some numer-
ical experiments for a fractional stochastic wave equation to verify the theoretical rates
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obtained in Subsections 3.1 and 3.2. In particular, in Subsection 4.1, we present some
numerical results for the spectral Galerkin approximation and space-time white noise,
while in Subsection 4.2, we describe some experiments for the finite element method
and trace-class noise.

Notation

We denote by R
+
0 the set {t ∈ R : t ≥ 0}. For Banach spaces V and W we denote by

L(V ,W ) the space of bounded linear operators from V intoW endowedwith the norm
‖A‖L(V ,W ) = inf{C ≥ 0 : ‖Av‖W ≤ C‖v‖V for all v ∈ V }, for A ∈ L(V ,W ).

If V = W , we write L(V ) for L(V ,W ) and we denote the norm by ‖ · ‖L(V ). For an
operator valued function S : [a, b] → L(V ,W ) we use the notation

Ṡ(t)v := d

dt

(
t �→ S(t)v

)
(t), v ∈ V ,

whenever t �→ S(t)v is differentiable at t . Furthermore, for two real separable Hilbert
spaces V and W , we denote by LHS(V ,W ) the space of Hilbert-Schmidt operators
from V to W equipped with the norm

‖T ‖2LHS(V ,W ) =
∞∑
n=1

‖T en‖2W , for T ∈ LHS(V ,W ),

for an orthonormal basis (en) ⊂ V . Let H be a real, separable, infinite-dimensional
Hilbert space and let A : D(A) ⊆ H → H , be an unbounded, self-adjoint, and
positive definite operator with compact inverse. For ξ ∈ R one defines the fractional
power Aξ of A via the standard spectral functional calculus of A. For ξ ≥ 0 we equip
D(Aξ ), where D(Aξ ) denotes the domain of Aξ , with the norm ‖x‖D(Aξ ) := ‖Aξ x‖H ,
x ∈ Aξ . For δ ≥ 0, let H A−δ , denote the completion of H with respect to the norm
‖x‖−δ := ‖A−δx‖H , x ∈ H A−δ . Let E be aBanach space.Wedenote by L p([0, T ]; E),
1 ≤ p < ∞, the space of allmeasurable functions f : [0, T ] → E being L p integrable
equipped the with the standard norm

‖ f ‖L p([0,T ];E) :=
( ∫ T

0
‖ f (t)‖p

E dt
)1/p

.

Moreover if p = ∞, then L∞([0, T ]; E) denotes the space of allmeasurable functions
f from [0, T ] to E being essential bounded in E on [0, T ] equipped with the norm

‖ f ‖L∞([0,T ];E) = ess sup
t∈[0,T ]

‖ f (t)‖E .

We denote by C([0, T ]; E) the space of continuous functions f : [0, T ] → E
endowed with the usual supremum norm. Let Cγ ([0, T ]; E), 0 < γ < 1, denote
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the space of functions f : [0, T ] → E such that the seminorm

‖ f ‖Cγ ([0,T ];E) := sup
t,s∈[0,T ]
t �=s

‖ f (t) − f (s)‖E
|t − s|γ < ∞.

Let (�,F , P) be a probability space and let L p(�; E) denote the space of random
variables X : (�,F) → (E,B(E)); that is,F/B(E)-measurable mappings X : � →
E , where B(E) denotes the Borel σ -algebra of E , such that

‖X‖p
L p(�;E)

= E
(‖X‖p

E

) =
∫

�

‖X(ω)‖p
E dP(ω) < ∞.

2 The abstract approximation result

Let H and H0 be two real separable Hilbert spaces. LetWH be a H -cylindricalWiener
process on a complete, filtered probability space (�,F , (Ft )t≥0, P)with respect to the
filtration (Ft )t≥0, the latter satisfying the usual conditions. We consider the following
integral equation

U (t) = X0(t) +
∫ t

0
S2(t − s)F(s,U (s)) ds +

∫ t

0
S1(t − s)G(s,U (s)) dWH (s).

(5)

To specify the assumptions on the coefficients F andG, let us fix two real separable
Hilbert spaces H1 and H2. Later on, we will see in the examples that these spaces will
be interpolation spaces associated with a linear operator.

Assumption 2.1 We assume that

(1) the mapping G : [0, T ] × H0 → LHS(H , H1) is Lipschitz continuous and of
linear growth in the second variable uniformly in [0, T ]; that is, there is a constant
CG > 0 such that

‖G(t, u) − G(s, v)‖LHS(H ,H1) ≤ CG(|t − s| + ‖u − v‖H0), u, v ∈ H0,

s, t ∈ [0, T ];

and

‖G(t, u)‖LHS(H ,H1) ≤ CG(1 + ‖u‖H0), u ∈ H0, t ∈ [0, T ];

(2) the mapping F : [0, T ] × H0 → H2 is Lipschitz continuous and of linear growth
in the second variable uniformly in [0, T ]; that is there is a constant CF > 0 such
that

‖F(t, u) − F(s, v)‖H2 ≤ CF (|t − s| + ‖u − v‖H0), u, v ∈ H0, s, t ∈ [0, T ];
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and

‖F(t, u)‖H2 ≤ CF (1 + ‖u‖H0), u ∈ H0, t ∈ [0, T ];

(3) the H0-valued process {X0(t)}t∈[0,T ] is predictable and, for some p > 2,

X0 ∈ L p(�; L∞([0, T ]; H0)).

We note that the t-dependence of F and G may be weakened considerably and they
may also be stochastic. Concerning the families Si we suppose the following.

Assumption 2.2 We assume that the linear operator families Si are strongly continu-
ously differentiable as operators from Hi to H0 on (0, T ), i = 1, 2. Furthermore, we
assume that

(1) there exists a function s1 ∈ L1([0, T ]; R
+
0 ) and a constant 0 < γ1 < 1

2 such that

tγ1‖Ṡ1(t)x‖H0 + tγ1−1‖S1(t)x‖H0 ≤ s1(t)‖x‖H1 , for all x ∈ H1, t ∈ (0, T );

(2) there exists a function s2 ∈ L1([0, T ]; R
+
0 ) and a constant 0 < γ2 < 1 such that

tγ2‖Ṡ2(t)x‖H0 + tγ2−1‖S2(t)x‖H0 ≤ s2(t)‖x‖H2 , for all x ∈ H2, t ∈ (0, T ).

We consider an approximation of (5) given by the following integral equation

Un(t) = X0
n(t) +

∫ t

0
S2n (t − s)F(s,Un(s)) ds +

∫ t

0
S1n(t − s)G(s,Un(s)) dWH (s),

(6)

where {X0
n(t)}t∈[0,T ] is H0-predictable and X0

n ∈ L p(�; L∞([0, T ]; H0)). Concern-
ing the approximation we make the following assumptions.

Assumption 2.3 Let γ1 and γ2 be as in Assumption 2.2. For bounded functions ri :
N → R

+, i = 1, 2 consider

� i
n(t) := 1

ri (n)

[
Si (t) − Sin(t)

]
, i = 1, 2.

We assume that the linear operator families Sin are strongly continuously differentiable
as operators from Hi to H0 on (0, T ), i = 1, 2. Furthermore, we assume that

(1) there exists a function h1 ∈ L1([0, T ]; R
+
0 ) such that for all n ∈ N we have

tγ1‖�̇1
n (t)x‖H0 + tγ1−1‖�1

n (t)x‖H0 ≤ h1(t)‖x‖H1 , for all x ∈ H1, t ∈ (0, T );

(2) there exists a function h2 ∈ L1([0, T ]; R
+
0 ) such that for all n ∈ N we have

tγ2‖�̇2
n (t)x‖H0 + tγ2−1‖�2

n (t)x‖H0 ≤ h2(t)‖x‖H2 , for all x ∈ H2, t ∈ (0, T ).
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Note that Assumptions 2.2 and 2.3 imply that for some C > 0, for all n ∈ N,

tγ1‖Ṡ1n(t)x‖H0 + tγ1−1‖S1n(t)x‖H0 ≤ (s1(t) + Ch1(t))‖x‖H1 , (7)

for all x ∈ H1, t ∈ (0, T ), and

tγ2‖Ṡ2n (t)x‖H0 + tγ2−1‖S2n (t)x‖H0 ≤ (s2(t) + Ch2(t))‖x‖H2 , (8)

for all x ∈ H2, t ∈ (0, T ).

Example 2.4 (Stochastic heat equation) In order to illustrate a typical situation of our
basic assumptions, we first consider the familiar setting of the heat equation. Let A :
D(A) ⊂ H0 → H0 be an unbounded, densely defined, self-adjoint, positive definite
operator with compact inverse. Let λn denote the eigenvalues of A, arranged in a non-
decreasing order, with corresponding orthonormal eigenbasis (en) ⊂ H0. A typical
example is when H0 = L2(D), where D ⊂ R

d is a bounded domain with smooth or
convex polygonal boundary, and A = −�with Dirichlet zero boundary conditions. In
this case, we have S1(t) = S2(t) = e−t A. Typically the spaces H1 and H2 are related to
the fractional powers of A but for simplicitywe take H1 = H2 = H = H0. In this case,
Assumptions 2.1 become standard global Lipschitz assumptions on the coefficients
in the equation. Furthermore, due to the analyticity of the semigroup S(t) := e−t A

one has the well-known smoothing properties

‖Aξ S(t)x‖H0 ≤ Mt−ξ‖x‖H0 , ‖Aξ Ṡ(t)x‖H0 ≤ Mt−ξ−1‖x‖H0 ,

for t > 0 and ξ ≥ 0. Then Assumption 2.2-(1) is satisfied for any 0 < γ1 < 1
2

for s1(t) = Mtγ1−1 and Assumption 2.2-(2) is satisfied for any 0 < γ2 < 1 for
s2(t) = Mtγ2−1. The simplest example of an approximation procedure that we have
in mind is the spectral Galerkin method. We define a family of finite-dimensional
subspaces {Hn : n ∈ N} of H0 by

Hn = span{e1, e2, . . . , en}

and define the orthogonal projection

Pn : H0 → Hn, Pnx =
n∑

k=1

(x, ek)H0ek, x ∈ H0, (9)

where (· , ·)H0 denotes the inner product of H0. It is easy to see that

‖A−ν(I − Pn)‖L(H0) = ‖(I − Pn)A
−ν‖L(H0) = sup

k≥n+1
λ−ν
k = λ−ν

n+1, ν ≥ 0.

The approximating operators become

S1n(t) = S2n (t) = Pn S(t) = S(t)Pn := Sn(t).
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Using eigenfunctions and eigenvalues of A we can write

Sn(t)x =
n∑

k=1

e−λk t (x, ek)H0ek .

For ν ≥ 0, we set r1(n) = r2(n) = λ−ν
n+1. We then have

�1
n (t) = �2

n (t) = λν
n+1(S(t) − Sn(t)) = λν

n+1(I − Pn)S(t)

with

‖� i
n(t)x‖H0 ≤ C‖AνS(t)x‖H0 ≤ Ct−ν‖x‖H0 , i = 1, 2 and n ∈ N,

and

‖�̇ i
n(t)x‖H0 ≤ C‖Aν Ṡ(t)x‖H0 ≤ Ct−ν−1‖x‖H0 , i = 1, 2 and n ∈ N.

Thus, Assumption 2.3 is satisfied with r1(n) = λ
−ν1
n+1 with ν1 < γ1 and h1(t) =

Ctγ1−1−ν1 and r2(n) = λ
−ν2
n+1 with ν2 < γ2 and h2(t) = Ctγ2−1−ν2 .

Example 2.5 (Fractional stochastic heat Equation) Here we consider the fractional
stochastic heat Eq. (3) with mild solution given by (17) with parameters α ∈ (0, 1),
β = κ = 1, u0 = U0 and u1 = 0, where the operator family Sα,β is defined by (18) via
its Laplace transform. We use the setting of the previous example for A, F and G; that
is, consider the global Lipschitz case. In this case we have S1(t) = S2(t) = Sα,1(t)
with smoothing properties specified in Lemma 3.1. In particular, we have

‖Aξ Si (t)x‖H0 ≤ Mt−αξ‖x‖H0 , ‖Aξ Ṡi (t)x‖H0 ≤ Mt−αξ−1‖x‖H0 , i = 1, 2,

for ξ ∈ [0, 1] and t > 0. Then, Assumption 2.2-(1) is satisfied for any 0 < γ1 < 1
2

for s1(t) = Mtγ1−1 and Assumption 2.2-(2) is satisfied for any 0 < γ2 < 1 for
s2(t) = Mtγ2−1. The approximating operators in this case become

S1n(t) = S2n (t) = Pn S
α,1(t) = Sα,1(t)Pn := Sα,1

n (t).

For ν ∈ [0, 1], we set r1(n) = r2(n) = λ−ν
n+1. We then have

�1
n (t) = �2

n (t) = λν
n+1(S

α,1(t) − Sα,1
n (t)) = λν

n+1(I − Pn)S
α,1(t)

with

‖� i
n(t)x‖H0 ≤ C‖AνSα,1(t)x‖H0 ≤ Ct−αν‖x‖H0 , i = 1, 2 and n ∈ N,

and

‖�̇ i
n(t)x‖H0 ≤ C‖Aν Ṡα,1(t)x‖H0 ≤ Ct−αν−1‖x‖H0 , i = 1, 2 and n ∈ N.
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Thus, Assumption 2.3 is satisfied with r1(n) = λ
−ν1
n+1 with ν1 <

γ1
α

and h1(t) =
Ctγ1−1−αν1 and r2(n) = λ

−ν2
n+1 with ν2 <

γ2
α
and h2(t) = Ctγ2−1−αν2 . It is important

to note that the additional restriction max(ν1, ν2) ≤ 1 applies as Sα,1 has only the
limited smoothing properties shown in Lemma 3.1. This implies that the rates improve
as α decreases to γi , however, remain constant once we have α ≤ γi .

Example 2.6 (Fractional stochastic wave equation) Here we consider the fractional
stochastic wave equation (4) with mild solution given by (17) with parameters α ∈
(1, 2), β = κ = 1, u0 = U0 and u1 = U1, where the operator family Sα,β is
defined by (18) via its Laplace transform. We use the setting of the previous example
for A, F and G; that is, consider the global Lipschitz case. In this case we have
S1(t) = S2(t) = Sα,1(t) with smoothing properties specified by Lemma 3.1

‖Aξ Si (t)x‖H0 ≤ Mt−αξ‖x‖H0 , ‖Aξ Ṡi (t)x‖H0 ≤ Mt−αξ−1‖x‖H0 , i = 1, 2,

for ξ ∈ [0, 1] and t > 0. Then, Assumption 2.2 (1) is satisfied for any 0 < γ1 < 1
2

for s1(t) = Mtγ1−1 and Assumption 2.2 (2) is satisfied for any 0 < γ2 < 1 for
s2(t) = Mtγ2−1. The approximating operators in this case become

S1n(t) = S2n (t) = Pn S
α,1(t) = Sα,1(t)Pn := Sα,1

n (t).

For ν ∈ [0, 1], we set r1(n) = r2(n) = λ−ν
n+1. We then have

�1
n (t) = �2

n (t) = λν
n+1(S

α,1(t) − Sα,1
n (t)) = λν

n+1(I − Pn)S
α,1(t)

with

‖� i
n(t)x‖H0 ≤ C‖AνSα,1(t)x‖H0 ≤ Ct−αν‖x‖H0 , i = 1, 2 and n ∈ N,

and

‖�̇ i
n(t)x‖H0 ≤ C‖Aν Ṡα,1(t)x‖H0 ≤ Ct−αν−1‖x‖H0 , i = 1, 2 and n ∈ N.

Thus, Assumption 2.3 is satisfied with r1(n) = λ
−ν1
n+1 with ν1 <

γ1
α

and h1(t) =
Ctγ1−1−αν1 and r2(n) = λ

−ν2
n+1 with ν2 <

γ2
α

and h2(t) = Ctγ2−1−αν2 . We see here
that the rate deteriorates with increasing α.

Wewill oftenmakeuse of the following results on theHölder regularity of deterministic
and stochastic convolutions.

Lemma 2.7 Let Y1 and Y2 be real separable Hilbert spaces. Let T > 0 and suppose
that� ∈ L p(�; L∞([0, T ]; Y1)) for some p ∈ [1,∞). Let� : [0, T ] → L(Y1,Y2)be
a mapping such that the mapping t �→ �(t)x is continuously differentiable on (0, T )

for all x ∈ Y1. Suppose, moreover, that there exists a function g ∈ L1([0, T ]; R
+
0 ) and

a constant θ ∈ (0, 1) such that for all t ∈ (0, T ) we have

tθ‖�̇(t)x‖Y2 + θ tθ−1‖�(t)x‖Y2 ≤ g(t)‖x‖Y1, for all x ∈ Y1.
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Then,

(a) the convolution

(� ∗ �) : t �→
∫ t

0
�(t − s)�(s) ds

is well-defined almost surely;
(b) there is C̄ > 0, depending only on θ , such that

∥∥∥t �→ (� ∗ �)(t)
∥∥∥
L p(�;C1−θ ([0,T ];Y2))

≤ C̄‖g‖L1([0,T ];R+
0 ) ‖�‖L p(�;L∞([0,T ];Y1)) ;

(c) there is C̃ > 0, depending only on θ and T , such that

∥∥∥t �→ (� ∗ �)(t)
∥∥∥
L p(�;C([0,T ];Y2))

≤ C̃‖g‖L1([0,T ];R+
0 ) ‖�‖L p(�;L∞([0,T ];Y1)) .

Proof Note first that, almost surely, the mapping s �→ �(t − s)�(s) ∈ L1([0, T ]; Y2)
and hence� ∗� is well defined almost surely. In [17,Proposition 3.6] it is shown, that
under the assumptions of the theorem, almost surely, there is C̄ > 0, depending only
on θ , such that

∥∥∥t �→ (� ∗ �)(t)
∥∥∥
C1−θ ([0,T ];Y2)

≤ C̄‖g‖L1([0,T ];R+
0 ) ‖�‖L∞([0,T ];Y1) .

The estimate in (b) follows by taking the pth power and expected value of both sides
of the inequality. Finally the estimate in (c) follows from the estimate in (b) by noting
that (� ∗ �)(0) = 0. �
Lemma 2.8 Let Y1 and Y2 be real separable Hilbert spaces. Let T > 0 and sup-
pose that the process � : � × [0, T ] → LHS(H ,Y1) is predictable and that
� ∈ L p′

(�; L∞([0, T ]; LHS(H ,Y1))) for some p′ ∈ (2,∞]. Let � : [0, T ] →
L(Y1,Y2) be a mapping such that the mapping t �→ �(t)x is continuously differ-
entiable on (0, T ) for all x ∈ Y1. Suppose, moreover, that there exists a function
g ∈ L1([0, T ]; R

+
0 ) and a constant θ ∈ (0, 1) such that for all t ∈ (0, T ),

tθ‖�̇(t)x‖Y2 + θ tθ−1‖�(t)x‖Y2 ≤ g(t)‖x‖Y1, for all x ∈ Y1.

Then,

(a) the stochastic convolution process

(� � �) : t �→
∫ t

0
�(t − s)�(s) dWH (s)
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is well-defined;
(b) for any γ ∈ (0, 1

2 − θ − 1
p′ ) with θ < 1

2 − 1
p′ there exists a modification of � � �

such that
∥∥∥t �→ (� � �)(t)

∥∥∥
L p′ (�;Cγ ([0,T ];Y2))

≤ C̄‖g‖L1([0,T ];R+
0 ) ‖�‖L p′ (�;L∞(0,T ;LHS(H ,Y1)))

,

where C̄ only depends on γ, θ, p′ and T ;
(c) the modification of � � � from (b) also satisfies

∥∥∥t �→ (� � �)(t)
∥∥∥
L p′ (�;C([0,T ];Y2))

≤ C̃‖g‖L1([0,T ];R+
0 ) ‖�‖L p′ (�;L∞(0,T ;LHS(H ,Y1)))

,

where C̃ only depends on γ, θ, p′ and T .

Proof Let 0 < η < 1
2 . Then

sup
0≤t≤T

‖s �→ (t − s)−η�(s)‖L p′ (�;L2([0,T ];LHS(H ,Y1)))

≤ Cη,T ‖�‖L p′ (�;L∞([0,T ];LHS(H ,Y1)))
. (10)

As Y1 is a Hilbert space, the statement in (a) follows from [17,Lemma 3.2] by noting
that in this case L2([0, T ]; LHS(H ,Y1)) � γ ([0, T ]; H ,Y1), where the latter denotes
the space of gamma radonifying operators from L2([0, T ]; H) → Y1, see [17,Section
2.2] for further details. Let γ ∈ (0, 1

2 − θ − 1
p′ ). Then, there is 0 < η < 1

2 such that

γ ∈ (0, η − θ − 1
p′ ). Then, by [17,Corollary 3.4], there exists a modification of � ��

and a constant C depending on γ, η, p′ such that

∥∥∥t �→ (� � �)(t)
∥∥∥
L p′ (�;Cγ ([0,T ];Y2))

≤ C‖g‖L1([0,T ];R+
0 ) sup

0≤t≤T
‖s �→ (t − s)−η�(s)‖L p′ (�;L2([0,T ];LHS(H ,Y1)))

≤ C̄‖g‖L1([0,T ];R+
0 )‖�‖L p′ (�;L∞([0,T ];LHS(H ,Y1)))

,

where C̄ depends on γ, p′, T and η, with the latter ultimately depending on γ, θ and
p′. We used [17,Corollary 3.4] in the first inequality and (10) in the second. Finally
the estimate in (c) follows from the estimate in (b) by noting that (� � �)(0) = 0. �

Next we state a basic existence and uniqueness result.

Lemma 2.9 Let p > 2 and let Assumption 2.1, Assumption 2.2, and Assumption 2.3
be satisfied with 0 < γ1 < 1

2 − 1
p and 0 < γ2 < 1. Then, Eqs. (5) and (6) have unique

H0-predictable solutions U, respectively Un, in L p(�; L∞([0, T ]; H0)) with

123



Stoch PDE: Anal Comp

‖U‖L p(�;L∞([0,T ];H0)) ≤ C(1 + ‖X0‖L p(�;L∞([0,T ];H0)));
‖Un‖L p(�;L∞([0,T ];H0)) ≤ C(1 + ‖X0

n‖L p(�;L∞([0,T ];H0))),
(11)

for some C > 0 depending on γ1, γ2, p and T .

Proof The proof is fairly standard as it uses Banach’s fixed point theorem and therefore
we only sketch a proof. Let T > 0 and set

XT := {U ∈ L p(�; L∞([0, T ]; H0)) : U is H0-predictable}.

For λ > 0, later to be chosen appropriately, we endow XT with the norm

‖U‖p
λ := E ess sup

t∈[0,T ]
e−λpt‖U (t)‖p

H0
.

Note, the latter definition is equivalent to the natural norm of L p(�; L∞([0, T ]; H0)).
For U ∈ XT define the fixed point map

L(U )(t) = X0(t) +
∫ t

0
S2(t − s)F(s,U (s)) ds +

∫ t

0
S1(t − s)G(s,U (s)) dWH (s)

=: X0(t) + L2(U )(t) + L1(U )(t).

For γ < min( 12 − 1
p − γ1, 1 − γ2) and for i = 1, 2, we have

‖Li (U )(t)‖L p(�;L∞([0,T ];H0))

≤ CT ‖Li (U )(t)‖L p(�;Cγ ([0,T ];H0)) ≤C‖si‖L1([0,T ];R+
0 )

(
1+‖U‖L p(�;L∞([0,T ];H0)

)
.

(12)

In the first inequality above we used the fact thatLi (U )(0) = 0. In the second inequal-
ity, for i = 1, we used Lemma 2.7 with Y1 = H2, Y2 = H0 and the linear growth
of F while, for i = 2, we used Lemma 2.8 with Y1 = H1, Y2 = H0 and the linear
growth of G. Hence, the operator L is a mapping XT → XT . Next we show that L is
a contraction for λ large enough. Indeed, if U , V ∈ XT , then

‖L2(U )(t) − L2(V )(t)‖p
λ

= E ess sup
t∈[0,T ]

∥∥∥∥
∫ t

0
e−λ(t−s)S2(t − s)e−λs (F(s,U (s)) − F(s, V (s))) ds

∥∥∥∥
p

H0

≤ CT

∥∥∥∥t �→
∫ t

0
e−λ(t−s)S2(t − s)e−λs (F(s,U (s)) − F(s, V (s))) ds

∥∥∥∥
p

L p(�;Cγ ([0,T ];H0))

≤ Cp,T

(∫ T

0
(2 + λt)e−λt s2(t) dt

)p

‖U − V ‖p
λ ,
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see the estimate of I1 in the proof of Theorem 2.11 for more details. We similarly have
that

‖L1(U )(t) − L1(V )(t)‖p
λ ≤ Cp,T

(∫ T

0
(2 + λt)e−λt s1(t) dt

)p

‖U − V ‖p
λ ,

see the estimate of I3 in the proof of Theorem 2.11 for more details. Thus, by choosing
λ > 0 large enough, we conclude that there is a constant M ∈ (0, 1) such that
‖L(U )(t) − L(V )(t)‖λ ≤ M‖U − V ‖λ when L : XT → XT is a contraction.
Therefore, by Banach’s fixed point theorem, there exists a unique U ∈ XT with
U = L(U ). A similar argument shows, by defining the corresponding mapping Ln in
an obvious way, the existence and uniqueness of Un with the terms (2 + λt)e−λt si (t)
above replaced by (2 + λt)e−λt (si (t) + Chi (t)) (c.f., (7) and (8)) yielding a uniform
in n contraction constant 0 < M ′ < 1 of Ln . The estimate (11) follows from the
following simple estimate

‖U‖λ = ‖L(U )‖λ ≤ ‖L(U ) − L(0)‖λ + ‖L(0)‖λ ≤ M‖U‖λ + ‖X0‖λ + Cp,T ,λ,

where λ is large enough so that 0 < M < 1 and similarly for Un . �

Remark 2.10 (Regularity) Observe that under the assumptions of Lemma 2.9, if also
X0, X0

n ∈ L p(�;Cγ ([0, T ]; H0)) holds for γ < min( 12 − 1
p − γ1, 1 − γ2), then

‖U‖L p(�;Cγ ([0,T ];H0)) ≤ C(1 + ‖X0‖L p(�;Cγ ([0,T ];H0)) + ‖X0‖L p(�;L∞([0,T ];H0)));
‖Un‖L p(�;Cγ ([0,T ];H0)) ≤ C(1 + ‖X0

n‖L p(�;Cγ ([0,T ];H0)) + ‖X0
n‖L p(�;L∞([0,T ];H0))).

Indeed, we have that U = X0 +L2(U ) +L1(U ) hence the claim for U follows from
the second inequality in (12) and (11); with an analogous argument showing the claim
for Un .

Now we are ready to present our main result.

Theorem 2.11 Let p > 2 and let Assumption 2.1, Assumption 2.2, and Assumption 2.3
be satisfied with 0 < γ1 < 1

2 − 1
p and 0 < γ2 < 1. Suppose that there exists a number

K > 0, such that

‖X0
n‖L p(�;L∞([0,T ];H0)) < K for all n ∈ N.

Let

e(t) := U (t) −Un(t) and e0(t) := X0(t) − X0
n(t), t ∈ [0, T ],

and let 0 < γ < min( 12 − 1
p − γ1, 1 − γ2).
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Then there exists a constant C > 0, depending on γ, γ1, γ2, p and T , such that for
all n ∈ N we have

‖e‖L p(�;Cγ ([0,T ];H0)) ≤ C
(‖e0‖L p(�;Cγ ([0,T ];H0)) + ‖e(0)‖L p(�;H0) + r1(n) + r2(n)

)
,

(13)

where the rate functions ri , i = 1, 2, are introduced in Assumption 2.3.

Proof Let t ∈ [0, T ] and fix a parameter λ > 0. Then

eλ(t) := e−λt e(t) := e−λt (U (t) −Un(t))

= e−λt X0(t) − e−λt X0
n(t)

+
∫ t

0
e−λ(t−s)S2(t − s)e−λs[F(s,U (s)) − F(s,Un(s))] ds

+
∫ t

0
e−λ(t−s)[S2(t − s) − S2n (t − s)]e−λs F(s,Un(s)) ds

+
∫ t

0
e−λ(t−s)S1(t − s)e−λs[G(s,U (s)) − G(s,Un(s))] dWH (s)

+
∫ t

0
e−λ(t−s)[S1(t − s) − S1n(t − s)]e−λsG(s,Un(s)) dWH (s)

:= eλ
0(t) + I1(t) + I2(t) + I3(t) + I4(t).

Note that, by Remark 2.10, we have that

‖e‖L p(�;Cγ ([0,T ];H0)) < ∞

and hence also

‖eλ‖L p(�;Cγ ([0,T ];H0)) < ∞.

In the following we estimate term by term.
Estimate of I1: To estimate I1, we will use Lemma 2.7 by setting Y1 = H2, Y2 = H0,

[0, T ] � t �→ �(t) := e−λt S2(t),

and�(t) := e−λt [F(t,U (t))−F(t,Un(t))].Wehave that� ∈ L p(�; L∞([0, T ]; H2))

since F is Lipschitz continuous andU ,Un ∈ L p(�; L∞([0, T ]; H0)) by Lemma 2.9.
Due to Assumption 2.2-(2), we know that the assumptions of Lemma 2.7 are satisfied
with g(t) = (2 + λt)e−λt s2(t) and θ = γ2. Indeed, we have that

�̇(t)x = −λe−λt S2(t)x + e−λt Ṡ2(t)x
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Therefore, as γ2 < 1,

tγ2‖�̇(t)x‖H0 + γ2t
γ2−1‖�(t)x‖H0 ≤ tγ2‖�̇(t)x‖H0 + tγ2−1‖�(t)x‖H0

≤ λe−λt tγ2‖S2(t)x‖H0 + e−λt tγ2‖Ṡ2(t)x‖H0 + e−λt tγ2−1‖S2(t)x‖H0

≤ λte−λt s2(t)‖x‖H2 + e−λt s2(t)‖x‖H2 + e−λt s2(t)‖x‖H2

= (2 + λt)e−λt s2(t)‖x‖H2 .

Thus, we can infer by Lemma 2.7

‖I1‖L p(�;Cγ ([0,T ];H0))

≤ C
∫ T

0
(2 + λt)e−λt s2(t) dt

(
E ess sup

t∈[0,T ]
e−λpt‖F(t,U (t)) − F(t,Un(t))‖p

H2

) 1
p

.

The Lipschitz continuity of F then gives

‖I1‖L p(�;Cγ ([0,T ];H0))

≤ C
∫ T

0
(2 + λt)e−λt s2(t) dt

(
E ess sup

t∈[0,T ]

(
e−λpt‖e(t)‖p

H0

)) 1
p

= C
∫ T

0
(2 + λt)e−λt s2(t) dt

(
E

(
ess sup
t∈[0,T ]

‖eλ(t)‖H0

)p) 1
p

≤ C
∫ T

0
(2 + λt)e−λt s2(t) dt

(
E

(
ess sup
t∈[0,T ]

(
tγ

∥∥∥∥ eλ(t) − eλ(0)

tγ

∥∥∥∥
H0

+ ‖e(0)‖H0

))p) 1
p

≤ C
∫ T

0
(2 + λt)e−λt s2(t) dt

(
T γ ‖eλ‖L p(�;Cγ ([0,T ];H0)) + ‖e(0)‖L p(�;H0)

)
. (14)

Estimate of I2: To estimate I2 we will use again Lemma 2.7 by setting Y1 = H2,
Y2 = H0,

[0, T ] � t �→ �(t) := 1

r2(n)
e−λt

[
S2(t) − S2n (t)

]
= e−λt�2

n (t),

and �(t) := e−λt F(t,Un(t)). We have that � ∈ L p(�; L∞([0, T ]; H2)) since F is
of linear growth in the second variable, uniformly in t ∈ [0, T ], and since we also have
thatUn ∈ L p(�; L∞([0, T ]; H0)) by Lemma 2.9. Assumption 2.3-(2) implies that the
assumptions of Lemma 2.7 are satisfied for all n ∈ N with g(t) = (2 + λt)e−λt h2(t)
and θ = γ2 as a similar calculation as in the case of I1 shows. Therefore, we can infer
from Lemma 2.7 that for all n ∈ N,
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1

r2(n)
‖I2‖L p(�;Cγ ([0,T ];H0))

≤ C
∫ T

0
(2 + λt)e−λt h2(t) dt

(
E ess sup

t∈[0,T ]
e−λpt‖F(t,Un(t))‖p

H2

) 1
p

≤ C
∫ T

0
h2(t) dt

(
E ess sup

t∈[0,T ]
‖F(t,Un(t))‖p

H2

) 1
p

.

The linear growth of F gives for all n ∈ N

1

r2(n)
‖I2‖L p(�;Cγ ([0,T ];H0)) ≤ C

∫ T

0
h2(t) dt

(
1 + E ess sup

t∈[0,T ]
‖Un(t)‖p

H0

) 1
p

.

Estimate of I3: Here, we will apply Lemma 2.8 with Y1 = H1, Y2 = H0,

[0, T ] � t �→ �(t) := e−λt S1(t),

and�(t) := e−λt [G(t,U (t))−G(t,Un(t))], t ∈ [0, T ].We have that the process� is
predictable as G is Lipschitz continuous andU ,Un are predictable by Lemma 2.9 and
also that � ∈ L p(�; L∞([0, T ]; LHS(H , H1))) asU ,Un ∈ L p(�; L∞([0, T ]; H0))

again by Lemma 2.9. Due to Assumption 2.2-(1) the assumptions of Lemma 2.8, with
g(t) = (2 + λt)e−λt s1(t) and θ = γ1 are satisfied, as a calculation similar to that in
the case of I1 shows. Hence, it follows from Lemma 2.8, that

‖I3‖L p(�;Cγ ([0,T ];H0))

≤ C
∫ T

0
(2 + λt)e−λt s1(t) dt

(
E ess sup

t∈[0,T ]
e−λpt‖G(t,U (t)) − G(t,Un(t))‖p

LHS(H ,H1)

) 1
p

.

The Lipschitz continuity of G then gives

‖I3‖L p(�;Cγ ([0,T ];H0)) ≤ C
∫ T

0
(2 + λt)e−λt s1(t) dt

(
E ess sup

t∈[0,T ]
e−λpt‖e(t)‖p

H0

) 1
p

.

By the same calculation used for estimating I1 in (14), where s2 is replaced by s1, we
get

‖I3‖L p(�;Cγ ([0,T ];H0))

≤ C
∫ T

0
(2 + λt)e−λt s1(t) dt

(
T γ ‖eλ‖L p(�;Cγ ([0,T ];H0)) + ‖e(0)‖L p(�;H0)

)
.
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Estimate of I4: To estimate I4 again we will use Lemma 2.8 by setting Y1 = H1,
Y2 = H0,

[0, T ] � t �→ �(t) := 1

r1(n)
e−λt

[
S1(t) − S1n(t)

]
= e−λt�1

n (t),

and �(t) := e−λtG(t,Un(t)). The process � is predictable as G is Lipschitz continu-
ous and Un is predictable by Lemma 2.9 and � ∈ L p(�; L∞([0, T ]; LHS(H , H1)))

as G is of linear growth in the second variable, uniformly in [0, T ], and Un ∈
L p(�; L∞([0, T ]; H0)) by Lemma 2.9. Assumption 2.3-(1) implies that the assump-
tion of Lemma 2.8 are satisfied for all n ∈ N with g(t) = (2 + λt)e−λt h1(t) and
θ = γ1, as a calculation similar to that in the case of I1 shows. Hence, we can infer
that for all n ∈ N,

1

r1(n)
‖I4‖L p(�;Cγ ([0,T ];H0))

≤ C
∫ T

0
(2 + λt)e−λt h1(t) dt

(
E ess sup

t∈[0,T ]
e−λpt‖G(t,Un(t))‖p

LHS(H ,H1)

) 1
p

≤ C
∫ T

0
h1(t) dt

(
E ess sup

t∈[0,T ]
‖G(t,Un(t))‖p

LHS(H ,H1)

) 1
p

.

The linear growth of G then gives, for all n ∈ N,

1

r1(n)
‖I4‖L p(�;Cγ ([0,T ];H0)) ≤ C

∫ T

0
h1(t) dt

(
1 + E ess sup

t∈[0,T ]
‖Un(t)‖p

H0

) 1
p

.

In this way we get

‖eλ‖L p(�;Cγ ([0,T ];H0)) ≤ ‖eλ
0‖L p(�;Cγ ([0,T ];H0))

+ C (r1(n) + r2(n))
(
1 + ‖Un‖L p(�;L∞([0,T ];H0))

)

+ C
∫ T

0
(2 + λt)e−λt (s1(t) + s2(t)) dt

(
‖eλ‖L p(�;Cγ ([0,T ];H0)) + ‖e(0)‖L p(�;H0)

)

(15)

Note that, by Lemma 2.9 and by our assumption ‖X0
n‖L p(�;L∞([0,T ];H0)) < K for all

n ∈ N, there exists a constant C > 0 such that

‖Un‖L p(�;L∞([0,T ];H0)) ≤ C for all n ∈ N.

Furthermore, using Lebesgue’s Dominated Convergence Theorem, it follows that

∫ T

0
(2 + λt)e−λt (s1(t) + s2(t)) dt → 0 as λ → ∞,
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and, hence, with λ > 0 large enough, we may absorb the last term on the right hand
side of (15) into the left hand side to conclude that

‖eλ‖L p(�;Cγ ([0,T ];H0)) ≤ C
(‖eλ

0‖L p(�;Cγ ([0,T ];H0)) + ‖e(0)‖L p(�;H0) + r1(n) + r2(n)
)
.

(16)

Remembering that eλ(0) = e(0) a straightforward calculation shows that

‖e‖L p(�;Cγ ([0,T ];H0)) ≤ C(λ, T )
(‖eλ‖L p(�;Cγ ([0,T ];H0)) + ‖e(0)‖L p(�:H0)

)
.

A similar calculation implies that, remembering that e0(0) = e(0),

‖eλ
0‖L p(�;Cγ ([0,T ];H0)) ≤ C(λ, T )

(‖e0‖L p(�;Cγ ([0,T ];H0)) + ‖e(0)‖L p(�:H0)

)
,

and the proof is complete in view of (16). �

We end this section with the special important case γ = 0.

Corollary 2.12 Let p > 2 and let Assumptions 2.1 – 2.3 be satisfied with 0 <

γ1 < 1
2 − 1

p and 0 < γ2 < 1. Suppose that, there exists K > 0, such that

‖X0
n‖L p(�;L∞([0,T ];H0)) < K for all n ∈ N. Let e(t) := U (t) − Un(t) and

e0(t) := X0(t) − X0
n(t), t ∈ [0, T ]. Then there exists a constant C > 0, depend-

ing on γ1, γ2, p and T , such that, for all n ∈ N,

‖e‖L p(�;C([0,T ];H0)) ≤ C
(‖e0‖L p(�;C([0,T ];H0)) + r1(n) + r2(n)

)
,

where the rate functions ri , i = 1, 2, are introduced in Assumption 2.3.

Proof In a completely analogous fashion and using the same notation as in the proof
of Theorem 2.11 using this time specifically item (c) from Lemma 2.7 and 2.8 one
concludes that

‖eλ‖L p(�;C([0,T ];H0)) ≤ ‖eλ
0‖L p(�;C([0,T ];H0))

+ C (r1(n) + r2(n))
(
1 + ‖Un‖L p(�;L∞([0,T ];H0))

)

+ C
∫ T

0
(2 + λt)e−λt (s1(t) + s2(t)) dt ‖eλ‖L p(�;C([0,T ];H0)).

Now the proof can be completed the same way as that of Theorem 2.11. �

3 Applications

In this section we give two typical instances where our abstract results are applicable.
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3.1 Spectral Galerkin approximations of a class of abstract stochastic integral
equations

Let A : D(A) ⊂ H0 → H0 be an unbounded, densely defined, self-adjoint, positive
definite operator with compact inverse. Let λn denote the eigenvalues of A, arranged
in a non-decreasing order, with corresponding orthonormal eigenbasis (en) ⊂ H0. For
α ∈ (0, 2), β > 1/2 and κ > 0 we consider the integral equation introduced in [23]
given by

U (t) = Sα,1(t)u0 + Sα,2(t)u1

+
∫ t

0
Sα,κ (t − s)F(U (s)) ds +

∫ t

0
Sα,β(t − s)G(U (s)) dWH (s) (17)

where the Laplace transform Ŝα,β(z)x := ∫ ∞
0 e−zt Sα,β(t)x dt , x ∈ H0, �z > 0, of

Sα,β is given by

Ŝα,β(z)x = zα−β(zα + A)−1x (18)

and u0, u1 ∈ L p(�; H0) for some p > 2 are F0-measurable. To connect Sα,β to the
convolution kernels t �→ 1

�(α)
tα−1 and t �→ 1

�(β)
tβ−1 we note that it is shown in

[23,Lemma 5.4] that for α ∈ (0, 2), β > 0, and x ∈ H0 one has

Sα,β(t)x = A
∫ t

0

(t − s)α−1

�(α)
Sα,β(s)x ds + 1

�(β)
tβ−1x . (19)

Next we provide smoothing estimates for Sα,β and its derivative.

Lemma 3.1 For ξ ∈ [0, 1], α ∈ (0, 2) and β > 0 the estimates

‖Aξ Sα,β(t)‖L(H0) ≤ Mtβ−αξ−1, t > 0, (20)

‖Aξ Ṡα,β(t)‖L(H0) ≤ Mtβ−αξ−2, t > 0, (21)

hold for some M = M(α, β, ξ).

Proof It is shown in [23,Lemma 5.4] that for all x ∈ H0,

Sα,β(t)x = 1

2π i

∫
�ρ,φ

ezt zα−β(zα + A)−1x dz,

where the contour is given by

�ρ,φ(s) =

⎧⎪⎨
⎪⎩

(s − φ + ρ)eiφ for s > φ,

ρeis for s ∈ (−φ, φ),

(−s − φ + ρ)e−iφ for s < −φ,
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where ρ > 0, φ > π
2 and αφ < π . Therefore, as Aξ is a closed operator, one has that

Sα,β(t)x ∈ D(Aξ ) and

Aξ Sα,β(t)x = 1

2π i

∫
�ρ,φ

ezt zα−β Aξ (zα + A)−1x dz (22)

provided that

∫
�ρ,φ

∣∣ezt zα−β
∣∣ ∥∥∥Aξ (zα + A)−1x

∥∥∥
H0

|dz| < ∞.

It is shown in the proof of [23,Lemma 5.4] that

∫
�ρ,φ

∣∣ezt zα−β
∣∣ ∥∥∥Aξ (zα + A)−1x

∥∥∥
H0

|dz| ≤ Ctβ−αξ−1‖x‖H0

∫
�1,φ

e�z |z|−β+αξ |dz|,
(23)

and hence (22) holds and

‖Aξ Sα,β(t)‖L(H0) ≤ Ctβ−αξ−1, t > 0.

To show (21) note that, by [23,Lemma 5.4] the function t → Sα,β(t)x can be extended
analytically to a sector in the right half-plane for all x ∈ H0. In particular, the function
t → Sα,β(t)x is differentiable for t > 0. Hence, we have

Aξ Ṡα,β(t)x = 1

2π i

∫
�ρ,φ

zezt zα−β Aξ (zα + A)−1x dz, (24)

provided that for every t > 0 there is ε > 0 and K = K (t, ε) > 0 such that

∫
�ρ,φ

∣∣zezt zα−β
∣∣ ∥∥∥Aξ (zα + A)−1x

∥∥∥
H0

|dz| < K

for t ∈ (t0 − ε, t0 + ε). In a completely analogous fashion as in the case of estimate
(23), we get

∫
�ρ,φ

∣∣zezt zα−β
∣∣ ∥∥∥Aξ (zα + A)−1x

∥∥∥
H0

|dz|

≤ Ctβ−αξ−2‖x‖H0

∫
�1,φ

e�z |z|−β+αξ+1 |dz|,

and thus (24) holds and

‖Aξ Ṡα,β(t)‖L(H0) ≤ Mtβ−αξ−2, t > 0,

which finishes the proof. �
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Remark 3.2 We would like to point out two crucial points concerning (20) and (21).
First, unless α = β = 1, which correspond the heat equation, the estimates do not
hold for ξ > 1. Furthermore, the constant M in the estimates blows up as α → 2 as in
this case we must have φ → π/2 and hence we integrate on a path with infinite line
segments approaching the imaginary axis.

Assumption 3.3 We assume that

(a) there exists 0 ≤ δF ≤ 1 such that F : H0 → H A−δF
is Lipschitz continuous. In

particular, there exists a constant C > 0 with

‖A−δF (F(x) − F(y))‖H0 ≤ C ‖x − y‖H0 , x, y ∈ H0.

(b) There exists 0 ≤ δG ≤ 1 such that G : H0 → LHS(H , H A−δG
) is Lipschitz

continuous. In particular, there exists a constant C > 0 with

‖A−δG (G(x) − G(y))‖LHS(H0,H0) ≤ C ‖x − y‖H0 , x, y ∈ H0.

Thus, the spaces H1 and H2 become

H1 := H A−δG
and H2 := H A−δF

.

Note next that Aξ commutes with Sα,β(t) for all t ≥ 0 and all ξ ∈ [−1, 0] using an
inversion formula for the Laplace transform (see, for example, [2,Chapter 2.4]) as this

property clearly holds for Ŝα,β(z), �z > 0, and Aξ ∈ L(H0) is this case. Then, for
t > 0, (20) and (21) show that

‖Sα,β(t)x‖H0 ≤ Mtβ−αδG−1‖x‖H1 , ‖Ṡα,β(t)x‖H0 ≤ Mtβ−αδG−2‖x‖H1;
‖Sα,κ (t)x‖H0 ≤ Mtκ−αδF−1‖x‖H2 , ‖Ṡα,κ (t)x‖H0 ≤ Mtκ−αδF−2‖x‖H2 .

(25)

We also define the approximating operators by

Sα,β
n (t) := Sα,β(t)Pn = Pn S

α,β(t),

where Pn is defined in (9), and the approximating process by

Un(t) = Sα,1
n (t)u0 + Sα,2

n (t)u1 +
∫ t

0
Sα,κ
n (t − s)F(Un(s)) ds

+
∫ t

0
Sα,β
n (t − s)G(Un(s)) ds. (26)

For ν ≥ 0, let

�1
n (t) := λν

n+1(S
α,β(t) − Sα,β

n (t)) = λν
n+1(I − Pn)S

α,β(t)
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and

�2
n (t) := λν

n+1(S
α,κ (t) − Sα,κ

n (t)) = λν
n+1(I − Pn)S

α,κ (t).

For t > 0, we then have for δG + ν ≤ 1 and δF + ν ≤ 1,

‖�1
n (t)x‖H0 ≤ C‖AνSα,β(t)x‖H0 ≤ Ctβ−α(δG+ν)−1‖x‖H1;

‖�̇1
n (t)x‖H0 ≤ C‖Aν Ṡα,β(t)x‖H0 ≤ Ctβ−α(δG+ν)−2‖x‖H1;

‖�2
n (t)x‖H0 ≤ C‖AνSα,κ (t)x‖H0 ≤ Ctκ−α(δF+ν)−1‖x‖H2;

‖�̇2
n (t)x‖H0 ≤ C‖Aν Ṡα,κ (t)x‖H0 ≤ Ctκ−α(δF+ν)−2‖x‖H2 .

(27)

Theorem 3.4 Let U and {Un : n ∈ N} given by (17) and (26), respectively. Let
e(t) := U (t) −Un(t) and e0(t) := Sα,1(t)u0 − Sα,1

n (t)u0 + Sα,2(t)u1 − Sα,2
n (t)u1.

(a) Let p > 2, 0 < γ1 < 1
2 − 1

p and 0 < γ2 < 1 and suppose thatmin(γ1+β−αδG −
1, γ2 + κ − αδF − 1) > 0. Let γ < min( 12 − 1

p − γ1, 1 − γ2), ν1 <
γ1+β−αδG−1

α

and ν2 <
γ2+κ−αδF−1

α
. If δG + ν1 ≤ 1 and δF + ν2 ≤ 1, then the error estimate

‖e‖L p(�;Cγ ([0,T ];H0)) ≤ C(T , p, ν1, ν2, γ )
(‖e0‖L p(�;Cγ ([0,T ];H0))

+‖e(0)‖L p(�;H0) + λ
−ν1
n+1 + λ

−ν2
n+1

)
(28)

holds. Set ν := min(ν1, ν2) and suppose that ν+ γ
α

≤ 1. If u0 ∈ L p(�;D(Aν+ γ
α ))

and u1 ∈ L p(�;D(Amax(0,ν+ γ−1
α

))), then

‖e‖L p(�;Cγ ([0,T ];H0)) ≤ C(T , p, ν1, ν2, γ, u0, u1)λ
−ν
n+1.

(b) Let p > 2 and suppose that min( 12 − 1
p + β − αδG − 1, κ − αδF ) > 0. For

ν1 <
1
2− 1

p+β−αδG−1

α
and ν2 < κ−αδF

α
, if δG + ν1 ≤ 1 and δF + ν2 ≤ 1, then the

error estimate

‖e‖L p(�;C([0,T ];H0)) ≤ C(T , p, ν1, ν2)
(‖e0‖L p(�;C([0,T ];H0)) + λ

−ν1
n+1 + λ

−ν2
n+1

)
(29)

holds. Setting ν := min(ν1, ν2), and assuming that u0 ∈ L p(�;D(Aν)) and

u1 ∈ L p(�;D(Amax(0,ν− 1
α
))) the error estimate

‖e‖L p(�;C([0,T ];H0)) ≤ C(T , p, ν1, ν2, u0, u1)λ
−ν
n+1

holds.
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Proof Estimate (28) follows from Theorem 2.11 using Assumption 3.3 and estimates
(25) and (27). To estimate the initial termsfirst note that as Sα,1(0) = I and Sα,2(0) = 0
it follows that

‖e(0)‖L p(�;H0) = ‖u0 − Pnu0‖L p(�;H0) ≤ Cλ−ν
n+1‖Aνu0‖L p(�;H0).

It is shown in [23,Lemma 5.4] that if x ∈ D(Aν+ γ
α ) with ν + γ

α
≤ 1, then the function

v(t) := Sα,1(t)x − x admits a fractional derivative of order γ defined by

Dγ
t v(t) = 1

�(1 − γ )

d

dt

∫ t

0
(t − s)−γ v(s) ds, γ ∈ (0, 1),

in D(Aν) and

‖AνDγ
t v(t)‖H0 ≤ M‖Aν+ γ

α x‖H0 , t ∈ (0, T ].

A straightforward calculation shows that (see also, [57,Vol. II, p. 138], [15])

‖Aνv(·)‖Cγ ([0,T ];H0) ≤ C‖AνDγ
t v(·)‖L∞([0,T ];H0).

Therefore,

‖Sα,1(·)u0 − Sα,1
n (·)u0‖L p(�;Cγ ([0,T ];H0))

= ‖Sα,1(·)(I − Pn)u0‖L p(�;Cγ ([0,T ];H0))

≤ λ−ν
n+1‖AνSα,1(·)u0‖L p(�;Cγ ([0,T ];H0))

= λ−ν
n+1‖Aν(Sα,1(·)u0 − u0)‖L p(�;Cγ ([0,T ];H0))

≤ Cλ−ν
n+1‖AνDγ

t (Sα,1(·)u0 − u0)‖L p(�;L∞([0,T ];H0))

≤ Cλ−ν
n+1‖Aν+ γ

α u0‖L p(�;H0).

Here, for the equality in the second row of the calculation, we used the fact that
the Cγ ([0, T ]; H0))-seminorm of a function f : [0, T ] → H0 does not change by
adding a constant to f . Similarly, it is also shown in [23,Lemma 5.4] that if x ∈
D(Amax(0,ν+ γ−1

α
)), then the function v(t) := Sα,2(t)x admits a fractional derivative

in D(Aν) and

‖AνDγ
t v(t)‖H0 ≤ M‖Amax(0,ν+ γ−1

α
)x‖H0 , t ∈ (0, T ].

Then, similarly as above we conclude that

‖Sα,2(·)u1 − Sα,2
n (·)u1‖L p(�;Cγ ([0,T ];H0)) ≤ Cλ−ν

n+1‖Amax(0,ν+ γ−1
α

)u1‖L p(�;H0)

and the proof of (a) is complete. To show the claims in (b) first note that estimate
(29) follows from Corollary 2.12 by choosing γ1 sufficiently close to 1

2 − 1
p and γ2
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sufficiently close to 1 together with Assumption 3.3 and estimates (25) and (27). To
estimate the initial terms first note that, by (20) with ξ = 0 and β = 1, using also the
fact that Sα,1 and A−ν commutes for ν ∈ [0, 1],

‖Sα,1(t)u0 − Sα,1
n (t)u0‖H0 = ‖(I − Pn)S

α,1(t)u0‖H0 ≤ Cλ−ν
n+1‖AνSα,1(t)u0‖H0

= Cλ−ν
n+1‖AνSα,1(t)A−ν Aνu0‖H0 = Cλ−ν

n+1‖Sα,1(t)Aνu0‖H0 ≤ Cλ−ν
n+1‖Aνu0‖H0 ,

for all t ≥ 0. Therefore,

‖Sα,1(·)u0 − Sα,1
n (·)u0‖L p(�;C([0,T ];H0)) ≤ Cλ−ν

n+1‖Aνu0‖L p(�;H0).

For the second initial term, let first ν ≤ 1
α
. Then, by (20) with ξ = ν and β = 2,

‖Sα,2(t)u1 − Sα,2
n (t)u1‖H0 = ‖(I − Pn)S

α,2(t)u1‖H0 ≤ Cλ−ν
n+1‖AνSα,2(t)u1‖H0

= Ct1−ανλ−ν
n+1‖u1‖H0 , t ≥ 0.

On the other hand, if 1 ≥ ν > 1
α
, then by (20) with ξ = 1

α
and β = 2,

‖Sα,2(t)u1 − Sα,2
n (t)u1‖H0 = ‖(I − Pn)S

α,2(t)u1‖H0 ≤ Cλ−ν
n+1‖AνSα,2(t)u1‖H0

= Cλ−ν
n+1‖A

1
α Sα,2(t)Aν− 1

α u1‖H0 ≤ Cλ−ν
n+1‖Aν− 1

α u1‖H0 , t ≥ 0.

In summary, if u1 ∈ L p(�;D(Amax(0,ν− 1
α
))), then

‖Sα,2(·)u1 − Sα,2
n (·)u1‖L p(�;Cγ ([0,T ];H0)) ≤ Cλ−ν

n+1‖Amax(0,ν− 1
α
)u1‖L p(�;H0),

which finishes the proof of item (b) and hence that of the theorem. �
Remark 3.5 In general, we may observe that larger values of the parameters β and κ

allow for higher rates of convergence in Theorem 3.4 as larger values of these param-
eters correspond to better time-regularity of the stochastic, respectively, deterministic
feedback. Note also, that the operator family Sα,2, which is Sα,β with β = 2 has a
stronger smoothing effect than Sα,1, which is Sα,β with β = 1, as Lemma 3.1 shows.
This explains why the regularity requirement in Theorem 3.4 is stricter on u0 than that
on u1 for the same rate of convergence.

Example 3.6 (Stochastic heat equation) The stochastic heat equation corresponds to
parameters α = β = κ = 1 and u1 = 0. In this case, Theorem 3.4, yields

‖e‖L p(�;Cγ ([0,T ];H0)) ≤ Cλ−ν
n+1,

for γ < min( 12 − 1
p − γ1, 1 − γ2) and ν = min(ν1, ν2) where ν1 < γ1 − δG and

ν2 < γ2 − δF , provided that u0 ∈ L p(�;D(Aν+γ )). Furthermore,

‖e‖L p(�;C([0,T ];H0)) ≤ Cλ−ν
n+1
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for ν = min(ν1, ν2) where ν1 < 1
2 − 1

p − δG and ν2 < 1 − δF , provided that
u0 ∈ L p(�;D(Aν)). This is consistent with [16,Proposition 3.1].

Example 3.7 (Fractional stochastic heat equation) The simplest fractional stochastic
heat equation, considered also in Example 2.5 in the standard global Lipschitz set-
ting, corresponds to parameters β = κ = 1, α ∈ (0, 1) and u1 = 0. In this case,
Theorem 3.4, yields

‖e‖L p(�;Cγ ([0,T ];H0)) ≤ Cλ−ν
n+1,

for γ < min( 12 − 1
p − γ1, 1 − γ2) and ν = min(ν1, ν2) where ν1 <

γ1
α

− δG and

ν2 <
γ2
α

− δF , provided that u0 ∈ L p(�;D(Aν+ γ
α )) and max(ν1 + δG , ν2 + δF ) ≤ 1

holds. Furthermore,

‖e‖L p(�;C([0,T ];H0)) ≤ Cλ−ν
n+1

for ν = min(ν1, ν2) where ν1 <
1
2− 1

p
α

− δG and ν2 < 1
α

− δF , provided that u0 ∈
L p(�;D(Aν)) and max(ν1 + δG, ν2 + δF ) ≤ 1 holds. As discussed in Example 2.5,
the rate only improves with decreasing α as long as max(ν1 + δG, ν2 + δF ) ≤ 1 holds
and stays the same when α decreases further. For example, if δF = δG = 0, then

‖e‖L p(�;C([0,T ];H0)) ≤ Cλ−ν
n+1

for ν < min(
1
2− 1

p
α

, 1).

Example 3.8 (Fractional stochastic wave equation) The simplest fractional stochastic
wave equation, considered also in Example 2.6 in the standard global Lipschitz setting,
corresponds to parameters β = κ = 1, α ∈ (1, 2). In this case, Theorem 3.4, yields

‖e‖L p(�;Cγ ([0,T ];H0)) ≤ Cλ−ν
n+1,

for γ < min( 12 − 1
p − γ1, 1− γ2) and ν = min(ν1, ν2) where ν1 <

γ1
α

− δG and ν2 <

γ2
α

− δF , provided that u0 ∈ L p(�;D(Aν+ γ
α )) and u1 ∈ L p(�;D(Amax(0,ν+ γ−1

α
))).

Furthermore,

‖e‖L p(�;C([0,T ];H0)) ≤ Cλ−ν
n+1

for ν = min(ν1, ν2) where ν1 <
1
2− 1

p
α

− δG and ν2 < 1
α

− δF , provided that u0 ∈
L p(�;D(Aν)), u1 ∈ L p(�;D(Amax(0,ν− 1

α
))). We see that the rates deteriorate with

increasing α.
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3.2 Finite element approximation of a stochastic fractional wave equation

In this section we give a more concrete example to demonstrate how the abstract
framework can be used for finite element approximation. Let D ⊂ R

d be a bounded
convex polygonal domain and let A = −� be the Dirichlet Laplacian in (H0, ‖ ·
‖H0) := (L2(D), ‖ · ‖L2(D)) with domain D(A) = H2(D) ∩ H1

0 (D). Let p > 2 and
consider a fractional stochastic wave equation [13, 38] given by

⎧⎨
⎩
dU (t) + A

∫ t

0
b(t − s)U (s) ds dt = F(U (s))dt + R(U (s))Q

1
2 dWH (t), t > 0;

U (0) = U0,

(30)

where WH is a cylindrical Wiener process in H = H0 and Q : H → H is a linear,
symmetric, positive semidefinite, trace class operator on H with an orthonormal basis
of eigenfunctions {ek : k ∈ N} with ‖ek‖L∞(D) ≤ M for all k = 1, 2, . . . . The initial
data U0 ∈ L p(�; H0) for some p > 2 is assumed to be F0-measurable. The kernel b
is the Riesz kernel given by

b(t) = tα−1

�(α)
, α ∈ (0, 1).

For u ∈ H0 define [F(u)](r) := f (u(r)) with f : R → R being a globally Lips-
chitz continuous function while [R(u)v](r) := g(u(r))v(r) with g : R → R being a
globally Lipschitz continuous function. Then we may take H0 = H1 = H2 = H and

a straightforward calculation yields that F and G(u)v := R(u)Q
1
2 v satisfy Assump-

tion 2.1. The mild solution of (30) is given by the variation of constants formula

U (t) = S(t)U0 +
∫ t

0
S(t − s)F(U (s)) ds +

∫ t

0
S(t − s)G(U (s)) dWH (s). (31)

Here the resolvent family {S(t)}t≥0 is a strongly continuous family of bounded linear
operators on H0, which is strongly differentiable on (0,∞) such that the function
t �→ S(t)x is the unique solution of

u̇(t) + A
∫ t

0
b(t − s)u(s) ds = 0, t > 0; u(0) = x, (32)

see [52,Corollary 1.2].

Remark 3.9 In connection with Subsection 3.1, in particular (19), by integrating (32)
from 0 to t , one sees that in fact S(t) = Sα+1,1(t).

The resolvent family S has the following smoothing properties [47]:

‖AμS(t)‖L(H0) ≤ Ct−(α+1)μ, μ ∈ [0, 1], t > 0;
‖Aμ Ṡ(t)‖L(H0) ≤ Ct−(α+1)μ−1, μ ∈ [−1, 1], t > 0. (33)
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For spatial approximation of (30) we consider a standard continuous finite element
method. Let {Th}0<h<1 denote a family of triangulations of D, with mesh size h >

0 and consider finite element spaces {Vh}0<h<1, where Vh ⊂ H1
0 (D) consists of

continuous piecewise linear functions vanishing at the boundary of D. We introduce
the "discrete Laplacian" (see, for example, [55,page 10])

Ah : Vh → Vh, (Ahψ, χ)H0 = (∇ψ,∇χ)H0 , ψ, χ ∈ Vh,

where (·, ·)H0 denotes the inner product of H0, and the orthogonal projection

Ph : H0 → Vh, (Ph f , χ)H0 = ( f , χ)H0 , χ ∈ Vh .

We consider the approximated problem

⎧⎨
⎩
dUh(t) + Ah

∫ t

0
b(t − s)Uh(s) ds dt = PhF(Uh(s))dt + PhG(Uh(s))dWH (t);

Uh(0) = PhU0,

with mild solution given by

Uh(t) = Sh(t)PhU0 +
∫ t

0
Sh(t − s)PhF(Uh(s)) ds

+
∫ t

0
Sh(t − s)PhG(Uh(s)) dWH (s). (34)

Similarly to the resolvent family {S(t)}t≥0, the resolvent family {Sh(t)}t≥0 is a strongly
continuous family of bounded linear operators on Vh , which is strongly differentiable
on (0,∞) such that for χ ∈ Vh the Vh-valued function t �→ Sh(t)χ is the unique
solution of

u̇h(t) +
∫ t

0
b(t − s)Ahuh(s) ds = 0, t > 0; uh(0) = χ. (35)

Let Eh(t) := S(t) − Sh(t)Ph denote the deterministic error operator. We have the
following error bounds.

Proposition 3.10 Let ε > 0 and T > 0. Then, the error estimates

‖Eh(t)x‖H0 ≤ Cεh
β‖Aβ( 1+ε

2 )x‖H0 , β ∈ [0, 2], x ∈ D(Aβ( 1+ε
2 )), t ∈ [0, T ];

(36)

‖Eh(t)‖L(H0) ≤ Ch2β t−β(α+1), β ∈ [0, 1], t ∈ (0, T ]; (37)

‖Ėh(t)‖L(H0) ≤ Ch2β t−β(α+1)−1, β ∈ [0, 1], t ∈ (0, T ], (38)

hold for 0 < h < 1 and C,Cε > 0.

123



Stoch PDE: Anal Comp

Proof The error bound (36) is shown in [40,Proposition 3.3]. The error estimate (37)
for β = 1 is proved in [46,Theorem 2.1] while for β ∈ [0, 1) it follows immediately
using also the stability estimate ‖Eh(t)‖ ≤ C ; the latter is a consequence of (36) with
β = 0. Thus, we have to prove (38). It is shown in [46,Eq. (2.2)] that the Laplace
transform Ê(z) of Eh satisfies the error estimate

‖Ê(z)‖L(H0) ≤ Ch2|z|α (39)

in a symmetric sectorial region containing the right half-plane. We write

Eh(t) = S(t) − Sh(t)Ph = S(t)Ph − Sh(t)Ph + S(t)(I − Ph) := E1
h(t) + E2

h(t).

Let x ∈ D(A). Then, it follows that t �→ E1
h(t)x is continuously differentiable on

[0,∞), E1
h(0)x = 0 and

‖Ė1
h(t)x‖H0 ≤ Ctα(‖Ax‖H0 + ‖Ah Phx‖H0).

Hence t �→ Ė1
h(t)x is Laplace transformable and

̂̇E1
h(z)x = z Ê1

h(z)x = z Ê(z)Phx . (40)

Let θ ∈ (π
2 , π

1+α
) be fixed and let � := {z : | arg(z)| = θ} denote the curve with Im z

running from −∞ to ∞. Then, using (39) and (40), we get

‖Ė1
h(t)x‖H0 =

∥∥∥∥ 1

2π i

∫
�

etzz Ê(z)Phx dz

∥∥∥∥
H0

≤ Ch2
∫

�

|z|α+1e−ct |z| |dz|‖Phx‖H0 ≤ Ch2
∫ ∞

0
sα+1e−cst ds‖Ph‖L(H0)‖x‖H0

≤ Ch2
∫ ∞

0

(r
t

)α+1
e−cr dr

t
‖x‖H0 ≤ Ch2t−(α+1)−1‖x‖H0 , t > 0.

Therefore, as D(A) is dense in H0, we conclude that

‖Ė1
h(t)‖L(H0) ≤ Ch2t−(α+1)−1, t > 0.

To bound Ė2
h(t) recall that ‖(I−Ph)x‖H0 ≤ Ch2‖Ax‖H0 . Hence, using the smoothing

property (33) and the self-adjointness of Ph and Ṡ, we get

‖Ė2
h(t)‖L(H0) = ‖Ṡ(t)(I − Ph)‖L(H0) = ‖[Ṡ(t)(I − Ph)]∗‖L(H0)

= ‖(I − Ph)
∗ Ṡ(t)∗‖L(H0) = ‖(I − Ph)Ṡ(t)‖L(H0) ≤ Ch2‖AṠ(t)‖L(H0)

≤ Ch2t−(α+1)−1,

where L∗ denotes the adjoint of an operator L ∈ L(H0). Thus, in summary,

‖Ėh(t)‖L(H0) ≤ ‖Ė1
h(t)‖L(H0) + ‖Ė2

h(t)‖L(H0) ≤ Ch2t−(α+1)−1, t > 0,
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which is (38) for β = 1. Then, it follows that to show (38) for β ∈ [0, 1] it is enough
to prove that

‖Ėh(t)‖L(H0) ≤ Ct−1, t > 0.

As, by (33), ‖Ṡ(t)‖L(H0) ≤ Ct−1, t > 0, we only need to prove that

‖Ṡh(t)Ph‖L(H0) ≤ Ct−1, t > 0. (41)

It is well-known, see, for example [55,Chapter 6] that the uniform resolvent estimate

‖(z I + Ah)
−1Ph‖L(H0) ≤ Mω

|z| (42)

holds in any sector �ω = {z : | arg z| < ω} \ {0}, ω ∈ (0, π). A simple calculation
shows that

Ŝh(z)Ph = zα(z1+α I + Ah)
−1Ph .

Note that

‖Ṡh(t)Phx‖H0 ≤ Ctα‖Ah‖L(H0)‖x‖H0

and thus t → Ṡh(t)Ph is Laplace transformable and

̂̇Sh(z)Ph = z1+α(z1+α I + Ah)
−1Ph − Ph,

for all z ∈ �ω with ω < π/(1 + α). Using (42) it follows that

‖ ̂̇Sh(z)Ph‖L(H0) ≤ M

for all z ∈ �ω with ω < π/(1 + α). Hence, with � as above, we have

‖Ṡh(t)Ph‖L(H0) =
∥∥∥∥ 1

2π i

∫
�

etz ̂̇Sh(z)Ph dz
∥∥∥∥L(H0)

≤ M
∫

�

e−ct |z| |dz| ≤ M̃t−1, t > 0,

and the proof is complete. �
We can now prove an error estimate in Hölder norms.

Theorem 3.11 Let U and Uh be given by (31) and (34), respectively. Set e(t) :=
U (t) −Uh(t) and e0(t) := S(t)U0 − Sh(t)PhU0.

(a) Let p > 2 and 0 < γ1 < 1
2 − 1

p . Then, for γ < 1
2 − 1

p − γ1 and β <
γ1

α+1 the
error estimate

‖e‖L p(�;Cγ ([0,T ];H0)) ≤ C(T , p, β, γ )(
‖e0‖L p(�;Cγ ([0,T ];H0)) + ‖e(0)‖L p(�;H0) + Ch2β

)
(43)
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holds. If the mesh is quasi-uniform and U0 ∈ L p(�; D(A
1

1+α )), then

‖e‖L p(�;Cγ ([0,T ];H0)) ≤ C(T , p, β, γ,U0)h
2β. (44)

(b) Let p > 2. Then, for β <
1
2− 1

p
α+1 the error estimate

‖e‖L p(�;C([0,T ];H0)) ≤ C(T , p, β, γ )
(
‖e0‖L p(�;C([0,T ];H0)) + Ch2β

)
(45)

holds. If U0 ∈ L p(�; D(Aβ(1+ε))) for some ε > 0, then

‖e‖L p(�;C([0,T ];H0)) ≤ C(T , p, β, γ,U0)h
2β. (46)

Proof Let 0 < γ1 < 1
2 − 1

p . Then,

tγ1‖Ṡ(t)x‖H0 + tγ1−1‖S(t)x‖H0 ≤ Ctγ1−1‖x‖H0 := s1(t)‖x‖H0 (47)

and thus s1 ∈ L1((0, T ]; R
+
0 ). Furthermore, by Proposition 3.10,

tγ1‖Ėh(t)x‖H0 + tγ1−1‖Eh(t)x‖H0 ≤ Ch2β t−β(α+1)−1+γ1‖x‖H0 := h1(t)h
2β‖x‖H0 ,

(48)

for 0 < h < 1.We have that h1 ∈ L1((0, T ]; R
+
0 ) if and only if−β(α+1)−1+γ1 >

−1; that is, when β <
γ1

α+1 . Then, the error bound in (43) follows from Theorem 2.11
for each fixed 0 < h < 1 with �1

n = h−2βEh , r1(n) = h2β for all n ∈ N and �2
n = 0,

r2(n) = h2β for all n ∈ N using (47) and (48) and noting that the function h1 in
(48) is independent of h and then so is the constant C in the error estimate (13) of
Theorem 2.11. To show (44) note that, by a standard finite element estimate, we have

‖e(0)‖L p(�;H0) = ‖(I − Ph)U0‖L p(�;H0) ≤ Ch
2

1+α ‖A 1
1+α U0‖L p(�;H0). (49)

Furthermore, for x ∈ H0, by choosing χ = Phx in (35), we see that the function
t �→ Sh(t)Phx is the unique solution of (35); that is,

Ṡh(t)Phx + 1

�(α)

∫ t

0
(t − s)α−1AhSh(t)Phx ds = 0, t > 0,

and therefore it follows that

‖Ṡh(t)Phx‖H0 ≤ Ctα‖Ah Phx‖H0 ,

where we used the stability estimate ‖Sh(t)Ph‖L(H0) ≤ C , t ≥ 0. Using also (41) we
conclude, by interpolation that

‖Ṡh(t)Phx‖H0 ≤ Ctμ(1+α)−1‖Aμ
h Phx‖H0 , μ ∈ [0, 1]. (50)
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Therefore, using (33) and (50) with μ = 1
1+α

, it follows that

‖Ėh(t)x‖H0 ≤ ‖Ṡh(t)Phx‖H0 + ‖Ṡ(t)x‖H0 ≤ C‖A
1

1+α

h Phx‖H0 + C‖A 1
1+α x‖H0

= C‖A
1

1+α

h Ph A
− 1

1+α A
1

1+α x‖H0 + C‖A 1
1+α x‖H0

≤ C‖A
1

1+α

h Ph A
− 1

1+α ‖L(H0)‖A
1

1+α x‖H0 + C‖A 1
1+α x‖H0 ≤ C‖A 1

1+α x‖H0 , t ∈ [0, T ].

Here we also used that, by the self-adjointness of A−1, Ah and Ph ,

‖Aδ
h Ph A

−δ‖L(H0) = ‖Ph Aδ
h Ph A

−δ‖L(H0) = ‖(Ph Aδ
h Ph A

−δ)∗‖L(H0)

= ‖(A−δ)∗(Ph Aδ
h Ph)

∗‖L(H0) = ‖A−δAδ
h Ph‖L(H0) ≤ C,

where the last inequality holds for δ ∈ [0, 1] for quasi-uniform meshes, see, for
example, the proof of Theorem 4.4 (iv) in [36]. Thus, using interpolation in Hölder
spaces and the smooth data estimate from (36),

‖e0‖Cγ ([0,T ];H0) ≤ C‖e0‖γ

C1([0,T ];H0)
‖e0‖1−γ

C([0,T ];H0)
≤ Ch(1−γ ) 1

1+α
2

1+ε ‖A 1
1+α U0‖H0 .

As

(1 − γ )
1

1 + α

2

1 + ε
>

2γ1
1 + ε

1

1 + α
+

(
1

p
+ 1

2

)
1

1 + α

2

1 + ε
>

2γ1
1 + ε

1

1 + α

it follows that

‖e0‖L p(�;Cγ ([0,T ];H0)) ≤ Ch2β‖A 1
1+α U0‖L p(�;H0)

for all β <
γ1

α+1 and the proof of (44) is complete in view of (43) and (49). Next, the
estimate (45) follows from Corollary 2.12 in view of (47) and (48). Finally, using (36),
we immediately conclude that

‖e0‖L p(�;C([0,T ];H0)) ≤ Ch2β‖Aβ(1+ε)U0‖L p(�;H0),

whichfinishes the proof of (46) in viewof (45) and the proof of the theorem is complete.
�

Remark 3.12 If U0 is deterministic, then we may take p arbitrarily large in Theo-
rem 3.11 (similarly, in Theorem 3.4 in case u0 and u1 are deterministic). We also point
out that the estimate on ‖e0‖Cγ ([0,T ];H0) in the proof of Theorem 3.11 is not sharp in
terms of the regularity of the initial data. This follows from the fact that we estimate the
γ -Hölder norm by interpolation and not directly and hence more regularity on U0 is
assumed than what is necessary. However, a sharp, direct estimate on ‖e0‖Cγ ([0,T ];H0)

is not available in the finite element literature, and a derivation would be beyond the
scope of this paper.
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Remark 3.13 (Stochastic heat equation) Here we briefly comment on the stochastic
heat equation which also fits in our abstract framework. Suppose that F and G are as
above and S(t) := e−t A is the heat semigroup and Sh(t) := e−t Ah Ph , t ≥ 0. In this
case the well-known error estimates, see [55,Chapter 3],

‖Eh(t)x‖H0 ≤ Chβ‖A β
2 x‖H0 , β ∈ [0, 2], x ∈ D(Aβ), t ∈ [0, T ];

‖Eh(t)‖L(H0) ≤ Ch2β t−β, β ∈ [0, 1], t ∈ (0, T ];
‖Ėh(t)‖L(H0) ≤ Ch2β t−β−1, β ∈ [0, 1], t ∈ (0, T ],

hold for 0 < h < 1. Note that these are essentially (36–38) for α = 0. Then, similarly
as in the proof of Theorem 3.11 we get, for p > 2, 0 < γ1 < 1

2 − 1
p , γ < 1

2 − 1
p − γ1

and β < γ1 that the error estimate

‖e‖L p(�;Cγ ([0,T ];H0)) ≤ C(T , p, β)
(‖e0‖L p(�;Cγ ([0,T ];H0)) + ‖e(0)‖L p(�;H0) + Ch2β

)

holds, where e(t) := U (t) −Uh(t). In particular we have

‖e‖L p(�;C([0,T ];H0)) ≤ C(T , p, β)
(‖U0‖L p(�;Aβ) + 1

)
h2β

for β < 1
2 − 1

p . This result is consistent with [16,Proposition 4.2] but less smoothness
on the noise is assumed here; that is, we may take δG = 0.

Remark 3.14 In [40], a simplified version of (30) was considered with �(u) = I and
F = 0 (linear equation, additive noise). It was shown there that if Q has finite trace
then

sup
t∈[0,T ]

‖e(t)‖L2(�;H0)
≤ C

(
‖U0‖

L2(�;A
1+ε

2(1+α) )
+ 1

)
h

1
1+α .

This is consistent with Theorem 3.11 as in this case we may first take U0 = 0 and
hence take p in (45) arbitrarily large and then add the estimate for the initial term.

4 Numerical experiments

In this section,wewill illustrate our theoretical results by some numerical experiments.
The underlying equation we consider is the fractional stochastic wave Eq. (30), where
D = [0, 1], F = 0, �(U ) = I , and A = −� is the Laplacian with Dirichlet boundary
conditions in H0 = (L2(D), ‖ · ‖) with inner product denoted by (·, ·). In particular,
we will implement the numerical solution for the following equation:

⎧⎨
⎩
dU (t, x) −

∫ t

0
b(t − s)�U (s, x) ds dt = Q

1
2 dWH (t, x), t ∈ (0, 1], x ∈ D;

U (0, x) = sin(πx) := U0(x), x ∈ D,

(51)

123



Stoch PDE: Anal Comp

where WH is a H -cylindrical Wiener process with H = H0, b(t) = tα−1/�(α),

α ∈ (0, 1), and Q : H → H is symmetric, bounded, and positive semidefinite.
In Subsection 4.1, we apply the spectral Galerkin method based on the eigenvalues

λk = k2π2 and the orthonormal basis of corresponding eigenfunctions {ek : k ∈ N}.
For the driving noise we take space time white noise; that is, Q = I . In particular,
we take WH to be given by the formal series WH (t, x) = ∑∞

k=1 ek(x)β
k(t), x ∈ D,

t ≥ 0, where {βk : k = 1, 2, . . . } is a family of mutually independent standard scalar
Brownian motions. To perform the integration in time, we use theMittag-Leffler Euler
integrator (MLEI) method, developed for semilinear problems in [38]. In the present
linear setting this method is exact, that is, no additional time-discretization error is
introduced and wemay simulate the spatially approximated process exactly on a time-
grid.

In Subsection 4.2, we approximate the solution of (51) by finite elements. We
consider a Wiener process which is of trace class given by

Q
1
2WH (t, x) := 1[0,0.5](x)β(t), x ∈ D, t ∈ [0, 1], (52)

where β is a scalar Brownian motion and 1[0,0.5] is the characteristic function of the
interval [0, 0.5]. That is, the Fourier expansion of the driving Wiener process contains
a single term only and thus its covariance operator is of rank 1 and hence trace class.
The motivation for the particular choice of the Wiener process is to consider trace
class noise which does not possess additional spatial smoothness. This is needed so
that we do not observe higher convergence rate, due to additional regularity, in the
numerical experiments than predicted by the theory for trace class noise. To perform
the time integration we implement a Lubich Convolution Quadrature (LCQ) method,
for details see [44, 45]. This method was successfully applied to a similar problem of
the third author in [40]. The LCQ method is easier to implement than the MLEI in
case of finite elements and a correlated noise.

4.1 The spectral Galerkinmethod and theMLEI-method

The mild solution of (51) with space time white noise can be written as

U (t) = S(t)U0 +
∞∑
k=1

∫ t

0
S(t − τ)ek dβk(τ ), (53)

where, as shown in [38], the resolvent family {S(t)}t≥0 can be represented as

S(t)v =
∞∑
k=1

Eα+1(−λk t
α+1)(v, ek)ek, t > 0, (54)
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where Eρ(z), ρ > 0, is the one parameter Mittag-Leffler function (MLF) defined by

Eρ(z) :=
∞∑
k=0

zk

�(ρk + 1)
, z ∈ C.

For more details about Mittag-Leffler function and their application, we refer to the
paper [49] and the book [25]. Moreover, in order to implement the MLF, we use the
Matlab function mlf.m, see [50].

Let � = {0 = t0 < t1 < · · · < tM = 1} be a partition of the time interval [0, 1].
From the representation given in (53) we get for m = 0, 1, 2, 3, . . . , M

U (tm) = S(tm)U0 +
∞∑
k=1

∫ tm

0
S(tm − s)ek dβk(s).

For the discretization in space, we introduce the finite dimensional subspaces HN =
span{ek : k = 1, 2, . . . , N } of H and the orthogonal projection PN : H → HN given
by

PNv =
N∑

k=1

(v, ek)ek, v ∈ H .

Using (54) we then get

SN (t)v := S(t)PNv =
N∑

k=1

Eα+1(−λk t
α+1)(v, ek)ek .

This way we obtain for the approximation Ū N
m ofU (tm) given by (53) by the Galerkin

method

Ū N
m = SN (tm)Ū N

0 +
N∑

k=1

∫ tm

0
SN (tm − s)ek dβk(s), (55)

with initial value Ū N
0 = PNU0. Let us define Ū N

m,k by

Ū N
m,k = Eα+1(−λk t

α+1
m )Ū N

0,k + Ok(tm),

where Ū N
0,k = (U (0), ek) and

Ok(tm) :=
∫ tm

0
Eα+1(−λk(tm − s)α+1) dβk(s).
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 = 0.050, numerical rate = 0.1763, theoretical rate = 0.1792
 = 0.025, numerical rate = 0.2057, theoretical rate = 0.2170
 = 0.000, numerical rate = 0.2292, theoretical rate = 0.2547

Fig. 1 The approximation error for the spectral Galerkin method and the MLEI-method in the
L2(�;Cγ ([0, T ]; H0))-norm with α = 0.325

Then, (55) can be rewritten as

Ū N
m =

N∑
k=1

Ū N
m,kek .

To simulate the stochastic convolution process let us observe that

N := (Ok(t1),Ok(t2), . . . ,Ok(tM ))�

is a M-dimensional Gaussian random variable with zero mean and covariance matrix
R = (Ri, j )

M
i, j=1

Ri, j =
∫ ti∧t j

0
Eα+1(−λk(ti − s)α+1)Eα+1(−λk(t j − s)α+1) ds.

Thus,N can be represented as Kχ , where χ is an M-dimensional standard Gaussian
random variable and K is the solution of equation KKT = R (see Theorem 2.2 of
[28]); the equation KKT = R can be solved by the Cholesky factorization.

In our numerical experiment, we simulated 100 sample paths to verify the rate of
convergence in the L2(�;Cγ ([0, T ]; H0))-norm for different γ and α. According to
Example 3.8we expect theoretical rate of ν <

γ1
1+α

−δG in the L p(�;Cγ ([0, T ]; H0))-

norm for appropriately smooth and integrable initial data U0, where γ < 1
2 − 1

p − γ1
and p > 2. Note that the parameter α in Example 3.8 corresponds to α + 1 in the
present example, see Remark 3.9. Taking into account that λN = N 2π2 and that
Q = I and hence δG > 1

4 we obtain a rate in N of almost 2( 12 − 1
p − γ )/(1+α)− 1

2 .
Note that sinceU0 is a deterministic eigenfunction of A and thusU0 ∈ L p(�;D(As))

for any p > 2 and s ≥ 0, we may bound the L2(�;Cγ ([0, T ]; H0))-norm by the
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ln
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 = 0.100, numerical rate = 0.0953, theoretical rate = 0.0926
 = 0.075, numerical rate = 0.1332, theoretical rate = 0.1296
 = 0.050, numerical rate = 0.1616, theoretical rate = 0.1667
 = 0.025, numerical rate = 0.1916, theoretical rate = 0.2037
 = 0.000, numerical rate = 0.2219, theoretical rate = 0.2407

Fig. 2 The approximation error for the spectral Galerkin method and the MLEI-method in the
L2(�;Cγ ([0, T ]; H0))-norm with α = 0.35

L p(�;Cγ ([0, T ]; H0))-norm for any p > 2 and hencewe expect a rate in N of almost
(1−2γ )(1+α)− 1

2 in the L
2(�;Cγ ([0, T ]; H0))-norm. In the simulations, we chose

a small time step �t = tk − tk−1 = 0.001, k = 0, 1, . . . , M and vary the dimension
of the finite dimensional approximation space HNi , i = 1, 2, . . . , 6, with Ni = 2i .
To estimate the error, we computed a reference solution with N = 213. In Fig. 1, we
present the error of the numerical approximation in the L2(�;Cγ ([0, T ]; H0))-norm
for α = 0.325 with varying γ (see also Fig. 2 and Fig. 3 for α = 0.35 and α = 0.375,
respectively). In Figs. 1-3, we also compute the numerical rate of convergence given
by

min
i=1,2,3,4,5

−
ln

(
errorγ (Ni )

errorγ (Ni+1)

)

ln
(

Ni
Ni+1

) , (56)

for γ = 0, 0.025, 0.05, 0.075, 0.1 where errorγ (Ni ) is the error of the numerical
approximation in the L2(�;Cγ ([0, T ]; H0))-norm when the dimension of HNi is Ni .
Here, one may observe that if γ decreases, then the rate of convergence increases.
Moreover, Figures 1-3 also show that the numerical rate of convergence is close to the
theoretical rate.

4.2 The finite element method and the LCQ-method

We first perform a time discretization of (51) with Q
1
2WH given by (52) by the first

order LCQ-method, for more details see e.g. [40]. To describe the first order LCQ
method, let � = {0 = t0 < t1 < t2, · · · < tM = 1} be an equidistant partition of
the time interval [0, 1] with time step size �t = tm − tm−1, m = 1, 2, 3, . . . , M . The
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ln
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 = 0.100, numerical rate = 0.0807, theoretical rate = 0.0818
 = 0.075, numerical rate = 0.1316, theoretical rate = 0.1182
 = 0.050, numerical rate = 0.1600, theoretical rate = 0.1545
 = 0.025, numerical rate = 0.1986, theoretical rate = 0.1909
 = 0.000, numerical rate = 0.2205, theoretical rate = 0.2273

Fig. 3 The approximation error for the spectral Galerkin method and the MLEI-method in the
L2(�;Cγ ([0, T ]; H0))-norm with α = 0.375

approximation of a convolution term

∫ tm

0
b(tm − s)g(s) ds

is then given by

m∑
i=1

ωm−i g(ti ),

where the weights {ωk : k ∈ N ∪ {0}} are chosen such that

∞∑
k=0

ωk z
k = b̂

(
1 − z

�t

)
, |z| < 1.

This is a first order quadrature; that is, it has an approximation order of O(�t).
Applying the LCQ-method, the equation for the approximation Ū , where Ūn(x) ≈
U (tn, x), can be written as follows

Ūn − Ūn−1 + �t
( n∑

i=1

ωn−i AŪi

)
= 1[0,0.5]�nβ, Ū0 = U (0), (57)

where �nβ = β(tn) − β(tn−1), n = 1, 2, . . . , M .
Secondly, we discretize (57) by linear finite elements. Let us consider a partition of

the domain D = [0, 1] given by {0 = x0 < x1 < x2 < · · · < xN = 1} with constant
mesh size h = xm+1 − xm , m = 0, 1, . . . , N − 1. Let us denote the finite element
spaces by {Vh}0<h<1, where Vh = span{ϕk : k = 1, 2, . . . , N − 1} ⊂ H1

0 (D) with ϕk
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being a standard hat function in the 1-D finite element method [42]. We introduce the
discrete Laplacian

Ah : Vh → Vh, (Ahξ, χ) = (ξ ′, χ ′), ξ, χ ∈ Vh, (58)

where v′ = dv
dx denotes the derivative, and the orthogonal projection

Ph : H0 → Vh, (Ph f , χ) = ( f , χ), f ∈ H0, χ ∈ Vh .

In order to obtain the numerical formulation for (51), we compute a Vh-valued random
variable Ū h

n satisfying for all k = 1, 2, . . . , N − 1

⎧⎪⎪⎨
⎪⎪⎩

(Ū h
n , ϕk) = (Ū h

n−1, ϕk) − �t
( n∑

i=1

ωn−i (AhŪ
h
i , ϕk)

)
+ (1[0,0.5], ϕk)�nβ;

(Ū h
0 , ϕk) = (sin(πx), ϕk),

where Ū h
n (x) =

N−1∑
k=1

Ū h
n,kϕk(x) ≈ U (tn, x). From (58) we then obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N−1∑
m=1

[(ϕm, ϕk) + �tω0(ϕ
′
m, ϕ′

k)]Ū h
n,m

=
N−1∑
m=1

(ϕm, ϕk)Ū
h
n−1,m − �t

N−1∑
m=1

(ϕ′
m, ϕ′

k)
( n−1∑

i=1

ωn−i Ū
h
i,m

)
+ (1[0,0.5], ϕk)�nβ;

N−1∑
m=1

(ϕm, ϕk)Ū
h
0,m = (sin(πx), ϕk).

The above system can be rewritten in the following form

Ū h
n = (K + �tω0L)−1(KŪh

n−1 − �t
n−1∑
i=1

ωn−i LŪh
i + J�nβ).

Here, the vectors Ū h
n and J are defined by Ū h

n = (Ū h
n,1, . . . , Ū

h
n,N−1)

� and J =
(J1, J2, . . . , JN−1)

� where Jk = (1[0,0.5], ϕk) for k = 1, . . . , N − 1. Moreover, the
stiffness matrix K = (Ki, j )

N−1
i, j=1 and the mass matrix L = (Li, j )

N−1
i, j=1 are given by

Ki, j =
1∫

0

ϕi (x)ϕ j (x) dx, Li, j =
1∫

0

ϕ′
i (x)ϕ

′
j (x) dx,

respectively.
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 = 0.100, numerical rate = 0.6395, theoretical rate = 0.6667
 = 0.075, numerical rate = 0.6561, theoretical rate = 0.7083
 = 0.050, numerical rate = 0.7304, theoretical rate = 0.7500
 = 0.025, numerical rate = 0.7869, theoretical rate = 0.7917
 = 0.000, numerical rate = 0.8512, theoretical rate = 0.8333

Fig. 4 The approximation error for the finite element method and the LCQ-method in the
L2(�;Cγ ([0, T ]; H0))-norm with α = 0.2
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 = 0.100, numerical rate = 0.6174, theoretical rate = 0.6400
 = 0.075, numerical rate = 0.6559, theoretical rate = 0.6800
 = 0.050, numerical rate = 0.7286, theoretical rate = 0.7200
 = 0.025, numerical rate = 0.7351, theoretical rate = 0.7600
 = 0.000, numerical rate = 0.8021, theoretical rate = 0.8000

Fig. 5 The approximation error for the finite element method and the LCQ-method in the
L2(�;Cγ ([0, T ]; H0))-norm with α = 0.25

In our numerical experiment, we used 500 sample paths to verify the dependence of
the rate of convergence in the L2(�;Cγ ([0, T ]; H0))-normonγ andα. The theoretical
rate of convergence is almost (1−2γ )/(1+α) according to Theorem 3.11. Note again
that, similarly to the previous example, sinceU0 is a deterministic eigenfunction of A,
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 = 0.100, numerical rate = 0.6087, theoretical rate = 0.6154
 = 0.075, numerical rate = 0.6557, theoretical rate = 0.6538
 = 0.050, numerical rate = 0.6973, theoretical rate = 0.6923
 = 0.025, numerical rate = 0.7007, theoretical rate = 0.7308
 = 0.000, numerical rate = 0.7753, theoretical rate = 0.7692

Fig. 6 The approximation error for the finite element method and the LCQ-method in the
L2(�;Cγ ([0, T ]; H0))-norm with α = 0.3

wemay bound the L2(�;Cγ ([0, T ]; H0))-norm by the L p(�;Cγ ([0, T ]; H0))-norm
for any p > 2. In the simulationswe choose fixed a step time�t = 0.0005 and varying
the dimension of the space approximation dim Vh = Ni −1 = 2i , i = 1, 2, . . . , 6; that
is, we take h = 1

Ni
, i = 1, 2, . . . , 6. Then, in order to measure the error, we computed

a reference solution with a mesh size h = 1
211

. In Fig. 4, we present the error of

the numerical approximation in the L2(�;Cγ ([0, T ]; H0))-norm for α = 0.2 with
varying values of γ (see also Fig. 5 and Fig. 6 for α = 0.25 and α = 0.3, respectively).
Similarly to Sect. 4.1, in this sectionwe also compute the numerical rate of convergence
according to (56) for γ = 0, 0.025, 0.05, 0.075, 0.1. Here, one may observe that if
γ decreases, then the rate of convergence again increases. Moreover, the figures also
show that the numerical rate of convergence is close to the theoretical rate.
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