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The numerical approximation of solutions to stochastic partial differential equations with additive spatial
white noise on bounded domains in Rd is considered. The differential operator is given by the fractional
power Lβ , β ∈ (0, 1) of an integer-order elliptic differential operator L and is therefore nonlocal. Its
inverse L−β is represented by a Bochner integral from the Dunford–Taylor functional calculus. By
applying a quadrature formula to this integral representation the inverse fractional-order operator L−β

is approximated by a weighted sum of nonfractional resolvents (I + exp(2y�) L)−1 at certain quadrature
nodes tj > 0. The resolvents are then discretized in space by a standard finite element method. This
approach is combined with an approximation of the white noise, which is based only on the mass matrix
of the finite element discretization. In this way an efficient numerical algorithm for computing samples
of the approximate solution is obtained. For the resulting approximation the strong mean-square error
is analyzed and an explicit rate of convergence is derived. Numerical experiments for L = κ2 − �,
κ > 0 with homogeneous Dirichlet boundary conditions on the unit cube (0, 1)d in d = 1, 2, 3 spatial
dimensions for varying β ∈ (0, 1) attest to the theoretical results.

Keywords: stochastic partial differential equations; Gaussian white noise; fractional operators; finite
element methods; Matérn covariances; spatial statistics.

1. Introduction

A real-valued Gaussian random field u defined on a spatial domain D ⊂ Rd is called a Gaussian Matérn
field if its covariance function C : D × D → R is given by

C(x1, x2) = 21−νσ 2

Γ (ν)
(κ‖x1 − x2‖)νKν(κ‖x1 − x2‖), x1, x2 ∈ D, (1.1)

where ‖ · ‖ is the Euclidean norm on Rd, and Γ , Kν denote the gamma function and the modified Bessel
function of the second kind, respectively. Via the positive parameters σ , ν and κ the most important
characteristics of the random field u can be controlled: its variance, smoothness and correlation range.
Due to this flexibility, Gaussian Matérn fields are often used for modeling in spatial statistics (see, e.g.,
Stein, 1999). However, a major drawback of this traditional covariance-based representation of Matérn
fields is its high computational effort. For instance, sampling from u at n locations x1, . . . , xn ∈ D
requires a matrix factorization of an n × n covariance matrix and, thus, in general, O(n3) arithmetic
operations.

There are several approaches attempting to cope with this computational problem (see, e.g., Furrer
et al., 2006; Banerjee et al., 2008; Sun et al., 2012; Nychka et al., 2015). One of them is based on the
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insight that a Gaussian Matérn field on D := Rd with parameters σ , ν and κ > 0 can be interpreted as
the statistically stationary solution u to the stochastic partial differential equation (SPDE):

(κ2 − Δ)β u(x) = W(x), x ∈ D. (1.2)

Here Δ denotes the Laplacian, 4β = 2ν + d, and W is Gaussian white noise on Rd. The marginal
variance of u is then given by σ 2 = Γ (2β − d/2)Γ (2β)−1(4π)−d/2κd−4β .

This relation between Matérn fields and SPDEs had already been noticed by Whittle (1954, 1963).
Later on, based on a finite element discretization of (1.2), where the differential operator κ2 − Δ is
augmented with Neumann boundary conditions, Markov random field approximations of Matérn fields
on bounded domains D � Rd were introduced by Lindgren et al. (2011). Owing to the computational
savings of this approach compared to the covariance-based approximations, these SPDE-based models
have become very popular in spatial statistics (see, e.g., Bhatt et al., 2015; Lai et al., 2015), and
they are still the subject of current research, mainly for the following reason: the SPDE formulation
(1.2) facilitates various generalizations of approximations of Gaussian Matérn fields involving (a) other
differential operators (Bolin & Lindgren, 2011; Lindgren et al., 2011; Fuglstad et al., 2015), (b) more
general domains, such as the sphere (Bolin & Lindgren, 2011; Lindgren et al., 2011) and (c) non-
Gaussian driving noise (Bolin, 2014; Wallin & Bolin, 2015). However, a considerable drawback of the
finite element approximation proposed by Lindgren et al. (2011) is that it is computable only if 2β ∈ N.
This limits flexibility and, in particular, it implies that the method cannot be applied to the important
special case of exponential covariance (ν = 1/2) in R2, which corresponds to β = 3/4.

With the objective of extending the approach of Lindgren et al. (2011) to all admissible values
ν > 0 (i.e., β > d/4) and the generalizations mentioned above we consider (1.2) in the more general
framework of fractional-order elliptic equations driven by white noise. We propose an explicit numerical
scheme for generating samples of an approximation to the Gaussian solution process, which allows for
any fractional power β > d/4. This method is based on (i) a standard finite element discretization in
space, (ii) a quadrature approximation of the inverse fractional elliptic differential operator proposed by
Bonito & Pasciak (2015) for deterministic equations and (iii) an approximation of the noise term on the
right-hand side, whose covariance matrix after discretization is equal to the finite element mass matrix.

Due to (iii) no explicit knowledge of the eigenfunctions of the differential operator is needed,
in contrast to approximations based on truncated Karhunen–Loève expansions of the noise term
(e.g., Zhang et al., 2016).

While Zhang et al. (2016) remarked that any orthonormal basis can be used in the Karhunen–Loève
expansion of the noise term before projecting it onto the finite element space, their error analysis
strongly benefits from the fact that the eigenfunctions of the differential operator are used. In fact, if
a general orthonormal basis was used, it would be difficult to obtain explicit rates of convergence with
respect to the truncation level after truncating the expansion at a finite level. Only if the constructed
basis has certain smoothness with respect to the differential operator is it possible to obtain explicit
rates of convergence (see, e.g., Kovács et al., 2011, addressing this kind of problem). Constructing
such an orthonormal basis requires a lot of computational effort, in particular, for complicated domains
and d = 2, 3. In contrast the present approach is based on an expansion with respect to the standard
(nonorthonormal) finite element basis for the discretized problem, which is readily available even for
complex geometries.

This work follows a series of investigations of numerical methods for deterministic fractional-
order equations (Gavrilyuk, 1996; Gavrilyuk et al., 2004, 2005; Roop, 2006; Caffarelli & Silvestre,
2007; Baeumer et al., 2015; Bonito & Pasciak, 2015; Jin et al., 2015; Nochetto et al., 2015;



NUMERICS FOR WHITE NOISE DRIVEN FRACTIONAL ELLIPTIC SPDEs 1053

Bonito et al., 2017) and for nonfractional elliptic SPDEs with random forcing (e.g., Du & Zhang,
2003; Babuska et al., 2004; Gyöngy & Martínez, 2006; Cao et al., 2007; Zhang et al., 2016). An
essentially similar idea to our approach, which combines (iii) with Lanczos and Krylov subspace
methods, was pursued by Simpson (2008) for the differential operator κ2 − Δ in (1.2). However,
neither weak nor strong convergence have been proven and the empirical results show generally
poor performance of the proposed scheme. A weak error estimate for κ2 − Δ and the nonfractional
case β = 1 in d = 2 spatial dimensions was derived by Simpson et al. (2012), showing
quadratic weak convergence for that particular case. Since the first two moments uniquely deter-
mine the distribution of the Gaussian solution process, an alternative approach is to consider the
problem of approximating the covariance function of the solution instead of solving for the solution
process itself (Dölz et al., 2017). Note that this method cannot be generalized to non-Gaussian
models.

The structure of this article is as follows: in Section 2 we present the fractional-order equation
with Gaussian white noise in a Hilbert space setting, together with the necessary assumptions, and
comment on existence and uniqueness of a solution to this problem. Furthermore, we introduce the
numerical approximation of the solution process and state our main result in Theorem 2.10: strong
mean-square convergence of this approximation at an explicit rate. This theorem is proven in Section 3
by partitioning the strong mean-square error into several terms and estimating these terms one by one.
In addition a weak-type convergence result is obtained in Corollary 3.4. In Section 4 the SPDE (1.2)
is considered for numerical experiments on the unit cube D = (0, 1)d with continuous, piecewise
linear finite element basis functions in d = 1, 2, 3 spatial dimensions. The outcomes of the paper are
summarized in Section 5.

2. Model problem and main result

In the following let H denote a separable Hilbert space and L : D(L) ⊂ H → H be a densely
defined, self-adjoint, positive definite linear operator with a compact inverse. In this case there
exists an orthonormal basis {ej}j∈N of H consisting of eigenvectors of L. The eigenvalue–eigenvector
pairs {(λj, ej)}j∈N can be arranged such that the positive eigenvalues {λj}j∈N are in nondecreasing
order:

0 < λ1 � λ2 � · · · � λj � λj+1 � · · · , lim
j→∞ λj = ∞.

We assume that the growth of the eigenvalues is given by λj ∝ jα for an exponent α > 0, i.e., there
exist constants cλ, Cλ > 0 such that

cλ j α � λj � Cλ j α ∀ j ∈ N. (2.1)

For β > 0 and φ ∈ D(Lβ) := {ψ ∈ H :
∑

j∈N λ
2β
j (ψ , ej)

2
H < ∞} the action of the fractional power

operator Lβ : D(Lβ) → H is defined by

Lβφ :=
∑
j∈N

λ
β
j (φ, ej)H ej. (2.2)
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The subspace Ḣ2β := D(Lβ) ⊂ H is itself a Hilbert space with respect to the inner product and
corresponding norm given by

(φ, ψ)2β := (
Lβφ, Lβψ

)
H , ‖φ‖2

2β := ∥∥Lβφ
∥∥2

H =
∑
j∈N

λ
2β
j (φ, ej)

2
H .

Its dual space after identification via the inner product on H, which is continuously extended as a duality
pairing, is denoted by Ḣ−2β . For s � 0 the norm on the dual space Ḣ−s enjoys the useful representation

‖g‖−s = sup
φ∈Ḣs\{0}

〈g, φ〉
‖φ‖s

=
⎛⎝∑

j∈N
λ−s

j 〈g, ej〉2

⎞⎠1/2

, (2.3)

where 〈 · , · 〉 denotes the duality pairing between Ḣ−s and Ḣs (Thomée, 2006, Proof of Lemma 5.1). We
obtain the following scale of densely and continuously embedded Hilbert spaces:

Ḣs ↪→ Ḣr ↪→ Ḣ0 := H ∼= Ḣ−0 ↪→ Ḣ−r ↪→ Ḣ−s, 0 � r � s. (2.4)

It is an immediate consequence of these definitions that Lβ is an isometric isomorphism from Ḣs to
Ḣs−2β for s � 2β, since for φ ∈ Ḣs we have

∥∥Lβφ
∥∥2

s−2β
=
∥∥∥∥∥∥
∑
j∈N

λ
β
j (φ, ej)H ej

∥∥∥∥∥∥
2

s−2β

=
∑
j∈N

λ
s−2β
j λ

2β
j (φ, ej)

2
H = ‖φ‖2

s . (2.5)

The following lemma states that Lβ can be extended to a bounded linear operator between Ḣs and Ḣs−2β

for all s ∈ R.

Lemma 2.1 For s ∈ R there exists a unique continuous extension of Lβ defined in (2.2) to an isometric
isomorphism Lβ : Ḣs → Ḣs−2β .

Proof. For s � 2β the isometry property, and thus injectivity, has already been observed in (2.5).
Surjectivity readily follows, since for any g ∈ Ḣs−2β the vector φ := ∑

j∈N λ
−β
j (g, ej)H ej is an element

of Ḣs with ‖φ‖s = ‖g‖s−2β and Lβφ = g.

Assume now that s < 2β. We obtain for φ ∈ Ḣ2β and ψ ∈ Ḣ2β−s,

〈
Lβφ, ψ

〉 = (
Lβφ, ψ

)
H =

∑
j∈N

λ
β
j (φ, ej)H(ψ , ej)H � ‖φ|s‖ψ‖2β−s.

By density of Ḣ2β ↪→ Ḣs there exists a unique linear continuous extension Lβ : Ḣs → Ḣs−2β . More-
over, it is an isometry, since the above estimate attains equality for φ ∈ Ḣs and ψ = Ls−βφ ∈ Ḣ2β−s.
Surjectivity follows, similarly to the case s � 2β from the representation of the dual norm in (2.3)
applied to Ḣs−2β . �
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Example 2.2 For κ � 0 and a bounded, convex, polygonal domain D ⊂ Rd consider the eigenvalue
value problem (

κ2 − Δ
)

e = λe in D,

e = 0 on ∂D,

i.e., the operator L = κ2 − Δ with homogeneous Dirichlet boundary conditions on H = L2(D). For this
case we have Ḣ2 = D(L) = H2(D) ∩ H1

0(D), Ḣ1 = H1
0(D), as well as Ḣ−1 = H1

0(D)∗ = H−1(D),
where ∗ denotes the dual after identification via the inner product on L2(D). For s ∈ (0, 1) one obtains
the intermediate spaces

Ḣs = Hs
0(D), Hs

0(D) := [
L2(D), H1

0(D)
]

s,2,

Ḣ−s = H−s(D), H−s(D) := [
H−1(D), L2(D)

]
1−s,2 = Hs

0(D)∗,

where [ · , · ]s,q denotes the real K-interpolation method (see, e.g., Thomée, 2006, Chapter 19).
Furthermore, one can show (Bonito & Pasciak, 2015, Proposition 4.1) that for 1 � s � 2,

Ḣs =
[
Ḣ1, Ḣ2

]
s−1,2

=
[
H1

0(D), H2(D) ∩ H1
0(D)

]
s−1,2

= Hs(D) ∩ H1
0(D).

If D = (0, 1)d is the d-dimensional unit cube, then it is well known (e.g., Courant & Hilbert, 1953,
Chapter VI.4) that the above eigenvalue problem has the following eigenvectors:

eθ (x) = e(θ1,...,θd)(x1, . . . , xd) =
d∏

i=1

(√
2 sin(πθixi)

)
, (2.6)

where θ = (θ1, . . . , θd) ∈ Nd is a d-dimensional multi-index. The corresponding eigenvalues are
given by

λθ = κ2 + π2|θ |2 = κ2 + π2
d∑

i=1

θ2
i . (2.7)

These eigenvalues satisfy (2.1) for α = 2/d. Note that only the values of cλ and Cλ in (2.1) change
when considering any other bounded domain D ⊂ Rd with smooth or polygonal boundary. The value
α = 2/d is the same by the min–max principle.

2.1 Fractional-order equation

Motivated by (1.2) we consider for g ∈ H the fractional-order equation

Lβu = g + W , (2.8)

where W denotes Gaussian white noise defined on a complete probability space (Ω ,A,P) with values
in the separable Hilbert space H. We assume that β ∈ (0, 1) and refer to Remark 3.6 for a discussion of
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the generalization to β > 0. Equation (2.8), as well as all the following equalities involving noise terms,
is understood to hold P-almost surely (P-a.s.).

Note that the white noise W can formally be represented by the Karhunen–Loève expansion with
respect to the orthonormal eigenbasis {ej}j∈N ⊂ H of L,

W =
∑
j∈N

ξj ej, (2.9)

where {ξj}j∈N is a sequence of independent real-valued standard normally distributed random variables.

As we will show in Proposition 2.3, this formally defined series converges in L2(Ω; Ḣ−s) for any s > 1
α

,

which implies that realizations of W are elements of Ḣ− 1
α
−ε for any ε > 0 P-a.s. Related to this

representation we introduce for N ∈ N the truncated white noise

WN :=
N∑

j=1

ξj ej. (2.10)

The following proposition specifies mean-square regularity of the white noise with respect to the
Ḣ-spaces in (2.4).

Proposition 2.3 For all s � 0 there exists a constant C > 0 depending only on α, cλ in (2.1), and s,
such that the truncated white noise WN in (2.10) satisfies

E
[‖WN‖2−s

]
� C

{
1 + N1−αs, s �= α−1,

1 + ln(N), s = α−1.

Furthermore, W ∈ L2

(
Ω; Ḣ− 1

α
−ε
)

holds for all ε > 0 with

E

[
‖W‖2

− 1
α
−ε

]
� c

− 1
α
−ε

λ

(
1 + 1

εα

)
.

Proof. The orthonormality of the vectors {ej}, along with the distribution of the random variables {ξj}
in the expansion of WN and the representation (2.3) of the dual norm, yields E

[‖WN‖2−s

] = ∑N
j=1 λ−s

j .
Thus, we conclude with (2.1) that

E
[
‖WN‖2−s

]
� c−s

λ

N∑
j=1

j−αs � c−s
λ

(
1 +

∫ N

1
x−αs d x

)
= c−s

λ

{
N1−αs−αs

1−αs , s �= α−1,

1 + ln(N), s = α−1.

Choosing s = α−1 + ε and taking the limit N → ∞ shows the L2

(
Ω; Ḣ− 1

α
−ε
)

regularity of W . �
Remark 2.4 Proposition 2.3 implies that W ∈ Ḣ− 1

α
−ε holds also P-a.s. for any ε > 0. Therefore,

existence and uniqueness of a solution u to (2.8) with regularity u ∈ Ḣ2β− 1
α
−ε (P-a.s.) follow from

Lemma 2.1. In addition the above results show that u ∈ L2

(
Ω; Ḣ2β− 1

α
−ε
)
. In particular u ∈ L2(Ω; H)

holds if 2αβ > 1.
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Remark 2.5 The above results are in accordance with Zhang et al. (Lemma 4.2 and Theorem 4.3 2016),
where the following semilinear elliptic stochastic boundary value problem is considered on D := (0, 1)d

for d ∈ {1, 2, 3}, g ∈ L2(D) and f : R → R:

−Δu(x) + f (u(x)) = g(x) + W (x), x ∈ D,

u(x) = 0, x ∈ ∂D,

and mean-square regularity in the Sobolev space Hs(D) is proven under appropriate assumptions
on the nonlinearity f for (i) the spatial white noise W and s < −d/2 and (ii) the solution u and
s < 2 − d/2. Note that in the linear case when f (u) = κ2u, κ � 0, this corresponds to problem (2.8)
with β = 1, L = κ2 − Δ, and the exponent α of the eigenvalue growth in (2.1) is given by α = 2/d; see
Example 2.2.

2.2 Finite element approximation

In the following we introduce a numerical method based on a finite element discretization for solving
the fractional-order equation (2.8) approximately. For this purpose we consider the family (Vh)h∈(0,1)

of subspaces of Ḣ1 with finite dimensions Nh := dim(Vh) < ∞. The Galerkin discretization of the
operator L : Ḣ1 → Ḣ−1 is denoted by Lh : Vh → Vh, i.e., (Lhψh, φh)H = 〈Lψh, φh〉 for all ψh, φh ∈ Vh.
For g ∈ H the finite element approximation of v = L−1g is then given by vh = L−1

h (Πhg), where
Πh : H → Vh denotes the H-orthogonal projection onto the finite element space Vh, i.e.,

〈Lvh, φh〉 = (Lhvh, φh)H = (Πhg, φh)H = (g, φh)H ∀φh ∈ Vh.

The eigenvalues {λj,h}Nh
j=1, as well as the corresponding H-orthonormal eigenvectors E := {ej,h}Nh

j=1 of
Lh, satisfy the variational equalities

(Lhej,h, φh)H = λj,h(ej,h, φh)H ∀φh ∈ Vh, 1 � j � Nh. (2.11)

These eigenvalues are again arranged in nondecreasing order:

0 < λ1,h � λ2,h � · · · � λNh,h.

Further assumptions on the approximation properties of finite element spaces are specified below.

Assumption 2.6 The family (Vh)h∈(0,1) of finite-dimensional subspaces of Ḣ1 satisfies the following:

(i) there exists d ∈ N such that Nh = dim(Vh) ∝ h−d for all h > 0;

(ii) there exist constants C1, C2 > 0 and h0 ∈ (0, 1), as well as exponents r, s > 0 and q > 1 such that
{λj,h} and {ej,h} in (2.11) satisfy

λj � λj,h � λj + C1hrλ
q
j , (2.12)

‖ej − ej,h‖2
H � C2h2sλ

q
j , (2.13)

for all h ∈ (0, h0) and j ∈ {1, . . . , Nh}.
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The following example illustrates that Assumption 2.6 is, in general, satisfied for d-dimensional
elliptic linear differential operators.

Example 2.7 Let D ⊂ Rd be a bounded, convex, polygonal domain domain and assume that
L : D(L) ⊂ L2(D) → L2(D) is a (strongly) elliptic linear differential operator of order 2m ∈ N

with smooth coefficients, i.e., there exists a constant γ > 0 such that

〈Lv, v〉 � γ ‖v‖2
Hm(D) ∀ v ∈ V ,

where V = Hm(D) or V = H1
0(D) ∩ Hm(D), and 〈 · , · 〉 denotes the duality pairing between V and its

dual V∗ after identification via the inner product on L2(D). Assume that Vh ⊂ V is an admissible finite
element space of polynomial degree p ∈ N with respect to a regular mesh on D̄. In this case Assumption
2.6 is satisfied (Strang & Fix, 2008, Theorems 6.1 and 6.2) for H = L2(D), Ḣ1 = V and the exponents

r = 2( p + 1 − m), s = min{ p + 1, 2( p + 1 − m)} and q = p+1
m .

In particular, if the family of finite element spaces Vh is quasi-uniform and has continuous, piecewise
linear basis functions, we have for L = κ2 − Δ with homogeneous Dirichlet boundary conditions in
Example 2.2 that r = s = q = 2.

In order to approximate the white noise W on the finite element space Vh we introduce the following
Vh-valued random variables:

(i) an expansion with respect to the discrete eigenbasis E :

W E
h :=

Nh∑
j=1

ξj ej,h, (2.14)

where ξ := (
ξ1, . . . , ξNh

)T is the vector of the first Nh independent standard normally distributed
random variables in the expansion (2.9) of W;

(ii) an expansion with respect to any basis Φ := {φj,h}Nh
j=1 of Vh:

W Φ
h :=

Nh∑
j=1

ξ̃j φj,h, (2.15)

where the random vector ξ̃ := (ξ̃1, . . . , ξ̃Nh
)T is given by

ξ̃ = R−1ξ , Rij := (ei,h, φj,h)H , 1 � i, j � Nh.

The vector ξ̃ is therefore Gaussian distributed with mean zero and covariance matrix given by
R−1(R−1)T = (RTR)−1 = M−1, where M = ((φi,h, φj,h)H)

Nh
i,j=1 is the mass matrix with respect

to the basis Φ of the finite element space Vh.

The following lemma shows that the above approximations of the white noise are equal in a mean-
square sense.
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Lemma 2.8 The noise approximations W E
h and W Φ

h in (2.14)–(2.15) are equivalent in L2(Ω; H), i.e.,
‖W E

h − W Φ
h ‖L2(Ω;H) = 0.

Proof. Inserting the definitions (2.14)–(2.15) of W E
h and W Φ

h yields

E
[
‖W E

h − W Φ
h ‖2

H

]
=

Nh∑
i=1

Nh∑
j=1

(
E
[
ξiξj

]
(ei,h, ej,h)H − 2E

[
ξ̃iξj

]
(φi,h, ej,h)H + E

[
ξ̃iξ̃j

]
(φi,h, φj,h)H

)
.

By definition of the matrices R and M and due to the distribution of the random vectors ξ and ξ̃ we have
for i, j ∈ {1, . . . , Nh},

E[ξiξj] = δij, (ei,h, ej,h)H = δij,

E
[
ξ̃iξ̃j

]
=
[
M−1

]
ij

, (φi,h, φj,h)H = Mji,

E
[
ξ̃iξj

]
=
[
R−1

]
ij

, (φi,h, ej,h)H = Rji,

where δij is the Kronecker delta. Thus, in terms of the trace tr of matrices we have

E
[‖W E

h − W Φ
h ‖2

H

] = tr(I) − 2 tr
(
R−1R

)+ tr
(
M−1M

) = 0,

which proves the equivalence of W E
h and W Φ

h in L2(Ω; H). �
Our numerical approach to cope with the fractional-order equation (2.8) will be based on the

following representation of the inverse L−β from the Dunford–Taylor calculus due to Balakrishnan
(1960) (see also Yosida, 1995, §IX.11, equation (4)):

L−β = sin(πβ)

π

∫ ∞

0
λ−β(λI + L)−1 d λ = 2 sin(πβ)

π

∫ ∞

−∞
e2βy(I + e2yL

)−1 d y.

We choose an equidistant grid {y� = �k : � ∈ Z, −K− � � � K+} with step size k > 0 for y and
replace the differential operator L with its discrete version Lh to formulate the following quadrature for

L−β
h proposed by Bonito & Pasciak (2015):

Qβ
h,k := 2k sin(πβ)

π

K+∑
�=−K−

e2βy�

(
IdVh

+ e2y�Lh

)−1
. (2.16)

Exponential convergence of order O
(
e−π2/(2k)

)
to L−β

h with respect to the norm

‖T‖L(Vh)
:= sup

φh∈Vh\{0}
‖Tφh‖H

‖φh‖H
(2.17)
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on the space L(Vh) := {T : Vh → Vh linear} has been proven (Bonito & Pasciak, 2015, Lemma 3.4,
Remark 3.1, Theorem. 3.5) for the choice

K− :=
⌈

π2

4βk2

⌉
, K+ :=

⌈
π2

4(1 − β)k2

⌉
.

Note that the quadrature (2.16) involves only nonfractional resolvents of the discrete operator Lh. Thus,
the corresponding numerical method is readily implementable.

With the notions of the H-orthogonal projection Πh on Vh, the noise approximation W Φ
h in (2.15)

and the quadrature Qβ
h,k in (2.16) at hand we can now introduce the numerical approximation uQ

h,k of the
solution u to (2.8) as

uQ
h,k := Qβ

h,k

(
Πhg + W Φ

h

)
. (2.18)

Remark 2.9 We emphasize the construction of the noise term W Φ
h on the right-hand side of (2.18).

For discretizing the white noise W it is common to project the truncated Karhunen–Loève expansion
WN in (2.10) onto the finite element space Vh and use the noise approximation ΠhWN ∈ L2(Ω; Vh)

(see, e.g., Zhang et al., 2016). Instead we define W Φ
h in (2.15) in such a way that it is mean-square

equivalent to the noise approximation W E
h in (2.14), which can be interpreted as Vh-valued white noise

expanded with respect to the H-orthonormal eigenvectors of Lh. Note that the noise approximation
W E

h is needed only for the error analysis but not for the actual implementation of the numerical
algorithm.

This approach has the following two major advantages in practice:

(i) Samples of the truncated white noise WN are not needed and, thus, neither are the exact
eigenvectors {ej} of the operator L.

(ii) For the computation of the approximation uQ
h,k in (2.18) in practice one has to sample from the

load vector b with entries

bi := (Πhg + W Φ
h , φi,h)H , 1 � i � Nh,

where {φj,h}Nh
j=1 is a basis of the finite element space Vh. We emphasize that this is computationally

feasible if the basis Φ in the noise approximation W Φ
h is chosen as the same, since then

b ∼ N (g, M), where gi = (g, φi,h)H and M is the mass matrix with respect to the basis Φ, which
is usually sparse. Hence, samples of b can be generated from b = g + Gz, where z ∼ N (0, I)
and G is the Cholesky factor of M = GGT.

The following estimate of the strong mean-square error between the exact solution u to the fractional-
order equation (2.8) and the numerical approximation uQ

h,k in (2.18) is our main result.

Theorem 2.10 Let the family (Vh)h∈(0,1) of finite element spaces satisfy Assumption 2.6 and assume
that the growth of the eigenvalues of the operator L is given by (2.1) for an exponent α with

1
2β

< α � min
{

r
(q−1)d , 2s

qd

}
, (2.19)
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where the values of d ∈ N, r, s > 0 and q > 1 are the same as in Assumption 2.6. Then, for sufficiently
small h ∈ (0, h0) and k ∈ (0, k0), the strong L2(Ω; H) error between the solution u of (2.8) and the
approximation uQ

h,k in (2.18) is bounded by

∥∥u − uQ
h,k

∥∥
L2(Ω;H)

� C
(

hmin{d(αβ−1/2), r, s} + e−π2/(2k)h−d/2
)

(1 + ‖g‖H), (2.20)

where the constant C > 0 is independent of h and k.

3. Partition of the error and error estimates

In order to prove Theorem 2.10 we express the difference between the exact solution u and the
approximation uQ

h,k as

u − uQ
h,k = (

u − uNh

)+ (
uNh

− uEh
)+ (

uEh − uΦ
h

)+ (
uΦ

h − uQ
h,k

)
,

and partition the strong error in (2.20) accordingly. Here uNh
, uEh and uΦ

h are defined in terms of the
truncated white noise in (2.10) and the white noise approximations in (2.14)–(2.15) as the P-almost sure
solutions to the equations

LβuN = gN + WN , (3.1)

for N ∈ N, where gN := ∑N
j=1(g, ej)H ej,

Lβ
h uEh = Πhg + W E

h , (3.2)

Lβ
h uΦ

h = Πhg + W Φ
h , (3.3)

and uNh
refers to the truncation with N = Nh = dim(Vh) terms in (3.1). Note that by Lemma 2.8 the

difference between uEh and uΦ
h vanishes identically in L2(Ω; H):

∥∥uEh − uΦ
h

∥∥
L2(Ω;H)

�
∥∥L−β

h

∥∥
L(Vh)

∥∥W E
h − W Φ

h

∥∥
L2(Ω;H)

= 0. (3.4)

In the following we address the three remaining terms separately: the truncation error, the error of
the finite element discretization and the error caused by the quadrature approximation Qβ

h,k in (2.16) of

the discrete fractional inverse L−β
h .

3.1 Truncation error

In the lemma below we bound the strong mean-square error between the exact solution u to the
fractional-order equation (2.8) and the approximation uN in (3.1) which is based on the truncation of the
right-hand side to gN + WN .
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Lemma 3.1 Suppose (2.1) for the eigenvalues of the operator L and that 2αβ > 1. Let u ∈ L2(Ω; H)

be the solution to (2.8). Then, for any g ∈ H, N ∈ N, there exists a unique solution uN ∈ L2

(
Ω; Ḣ2β

)
to

the truncated equation (3.1) and it satisfies

E
[
‖u − uN‖2

H

]
� CN−(2αβ−1)

(
1 + ‖g‖2

H

)
,

where the constant C > 0 depends only on α, β and the constants in (2.1). In particular, under
Assumption 2.6(i) we have

‖u − uNh
‖L2(Ω;H) � hd(αβ−1/2)(1 + ‖g‖H). (3.5)

Proof. Existence and uniqueness of a solution uN in L2

(
Ω; Ḣ2β

)
follows from the fact that for any

g ∈ H the truncated right-hand side gN + WN is an element of L2(Ω; H) as well as the isomorphism
property of Lβ : Ḣ2β → H in Lemma 2.1. If 2αβ > 1 we obtain for any N ∈ N,

E
[
‖u − uN‖2

H

]
= E

[∥∥L−β(g − gN + W − WN)
∥∥2

H

]
=
∑
j>N

λ
−2β
j

(
(g, ej)

2
H + 1

)

� c−2β
λ

(
1 + ‖g‖2

H

)∑
j>N

j−2αβ � N1−2αβ

c2β
λ (2αβ − 1)

(
1 + ‖g‖2

H

)
.

Under Assumption 2.6(i) we have Nh ∝ h−d and (3.5) readily follows. �

3.2 Finite element discretization error

The next ingredient in the derivation of (2.20) in Theorem 2.10 is an upper bound for the error caused
by introducing the finite element discretization. More precisely the solution uN of the truncated problem
(3.1) corresponds to the best ṼN-valued approximation of u ∈ L2(Ω; H). Here the finite-dimensional
subspace ṼN ⊂ Ḣ1 is the linear span of the first N eigenvectors of the operator L. Subsequently the
approximation uEh was defined in (3.2), which takes values in another finite-dimensional subspace,
namely in the finite element space Vh ⊂ Ḣ1. The purpose of the following lemma is to bound the
error between these two approximations when N = dim(Vh).

Lemma 3.2 Let Assumption 2.6 be satisfied. Assume that the eigenvalue growth of the operator L
is given by (2.1) for an exponent α with (2.19). Let uEh be the unique element in L2(Ω; Vh) satisfying
(3.2), i.e., (

LhuEh , φh

)
H = (

Πhg + W E
h , φh

)
H ∀φh ∈ Vh, P-a.s.,

and let uNh
∈ L2(Ω; H) denote the solution to the truncated equation (3.1) with N = Nh = dim(Vh)

terms. Then their difference can be bounded by∥∥uNh
− uEh

∥∥
L2(Ω;H)

� Chmin{d(αβ−1/2), r, s}(1 + ‖g‖H), (3.6)
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for sufficiently small h ∈ (0, h0), where the constant C > 0 depends only on α, β and the constants in
(2.1), (2.12) and (2.13).

Proof. In order to show the estimate in (3.6) we first note that Πhg can be expanded in terms of the
orthonormal eigenvectors {ej,h} of Lh by

Πhg =
Nh∑
j=1

(Πhg, ej,h)H ej,h =
Nh∑
j=1

(g, ej,h)H ej,h.

Thus, we can partition the difference in (3.6) as

∥∥uNh
− uEh

∥∥
L2(Ω;H)

=
∥∥∥L−β

(
gNh

+ WNh

)− L−β
h

(
Πhg + W E

h

)∥∥∥
L2(Ω;H)

=
∥∥∥∥∥∥

Nh∑
j=1

λ
−β
j ((g, ej)H + ξj)ej −

Nh∑
j=1

λ
−β
j,h ((g, ej,h)H + ξj)ej,h

∥∥∥∥∥∥
L2(Ω;H)

�

∥∥∥∥∥∥
Nh∑
j=1

λ
−β
j ((g, ej)H + ξj)(ej − ej,h)

∥∥∥∥∥∥
L2(Ω;H)

+
∥∥∥∥∥∥

Nh∑
j=1

λ
−β
j (g, ej − ej,h)H ej,h

∥∥∥∥∥∥
H

+
∥∥∥∥∥∥

Nh∑
j=1

(
λ

−β
j − λ

−β
j,h

)
((g, ej,h)H + ξj)ej,h

∥∥∥∥∥∥
L2(Ω;H)

=: (I) + (II) + (III).

Since the random variables {ξj} are independent and standard normally distributed we obtain for the first
term by the Cauchy–Schwarz inequality for sums,

(I)2 =
∥∥∥∥∥∥

Nh∑
j=1

λ
−β
j (g, ej)H(ej − ej,h)

∥∥∥∥∥∥
2

H

+
Nh∑
j=1

λ
−2β
j ‖ej − ej,h‖2

H

�

⎛⎝1 +
Nh∑
j=1

(g, ej)
2
H

⎞⎠ Nh∑
j=1

λ
−2β
j ‖ej − ej,h‖2

H �
(

1 + ‖g‖2
H

) Nh∑
j=1

λ
−2β
j ‖ej − ej,h‖2

H .

Assumption 2.6(i), (2.1) and (2.13) complete the estimation of the first term:

(I)2 � h2s
(

1 + ‖g‖2
H

) Nh∑
j=1

λ
q−2β
j � h2s

(
1 + ‖g‖2

H

) Nh∑
j=1

jα(q−2β)

� h2s
(

1 + N1+α(q−2β)
h

) (
1 + ‖g‖2

H

)
�
(

h2s + h2d(αβ−1/2)
) (

1 + ‖g‖2
H

)
,
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for h ∈ (0, h0), since dαq � 2s by (2.19). For the second term we find

(II)2 =
Nh∑
j=1

λ
−2β
j (g, ej − ej,h)

2
H � ‖g‖2

H

Nh∑
j=1

λ
−2β
j ‖ej − ej,h‖2

H ,

and conclude as for (I) that (II)2 �
(
h2s + h2d(αβ−1/2)

)‖g‖2
H . For (III) we use again the independence

and distribution of the random variables {ξj} and obtain

(III)2 =
Nh∑
j=1

(
λ

−β
j − λ

−β
j,h

)2 (
(g, ej,h)

2
H + 1

)
�
(

1 + ‖g‖2
H

) Nh∑
j=1

(
λ

−β
j − λ

−β
j,h

)2
.

By the mean value theorem there exists λ̃j ∈ (λj, λj,h) such that

λ
−β
j − λ

−β
j,h = βλ̃

−β−1
j (λj,h − λj) � βλ

−β−1
j (λj,h − λj) ∀ j ∈ {1, . . . , Nh}.

Therefore, we can bound the third term by (2.1) and (2.12) as

(III)2 �
(

1 + ‖g‖2
H

) Nh∑
j=1

λ
−2β−2
j (λj,h − λj)

2 � h2r
(

1 + ‖g‖2
H

) Nh∑
j=1

λ
2(q−β−1)
j

� h2r
(

1 + ‖g‖2
H

) Nh∑
j=1

j2α(q−β−1) �
(

h2r + h2d(αβ−1/2)
) (

1 + ‖g‖2
H

)
,

where we used the relations Nh ∝ h−d from Assumption 2.6(i) and αd(q − 1) � r from (2.19) in the
last estimate. �

3.3 Quadrature approximation error

As the final step for proving the strong convergence result of Theorem 2.10 we investigate the error
caused by applying the quadrature Qβ

h,k in (2.16) instead of the discrete fractional inverse L−β
h to the

right-hand side Πhg+W Φ
h . The difference between these two operators in the norm (2.17) on the space

L(Vh) has been bounded by Bonito & Pasciak (2015). The following lemma is a consequence of that
result and the distribution of the noise approximation W Φ

h .

Lemma 3.3 Let Qβ
h,k : Vh → Vh be the operator in (2.16) approximating L−β

h . Then, for sufficiently
small k ∈ (0, k0) and any φh ∈ Vh, the estimate

∥∥(Qβ
h,k − L−β

h

)
φh

∥∥
H � Ce−π2/(2k)‖φh‖H (3.7)
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holds, where the constant C > 0 depends on β and grows linearly in the largest eigenvalue λ−1
1,h of L−1

h .

In particular, for uΦ
h in (3.3) and uQ

h,k in (2.18), we have

∥∥uΦ
h − uQ

h,k

∥∥
L2(Ω;H)

� e−π2/(2k)
(

h−d/2 + ‖g‖H

)
. (3.8)

Proof. The first assertion is proven in Bonito & Pasciak (2015, Lemma 3.4, Theorem. 3.5). This bound,
‖Πhg‖H � ‖g‖H , and E

[‖W Φ
h ‖2

H

] = Nh � h−d imply (3.8). �

3.4 Proof of Theorem 2.10 and some remarks

After having bounded the truncation, the discretization and the quadrature errors in Sections 3.1–3.3 the
strong convergence result of Theorem 2.10 is an immediate consequence.

Proof of Theorem 2.10. As outlined at the beginning of the section we partition the mean-square error
as ∥∥u − uQ

h,k

∥∥
L2(Ω;H)

�
∥∥u − uNh

∥∥
L2(Ω;H)

+ ∥∥uNh
− uEh

∥∥
L2(Ω;H)

+ ∥∥uEh − uΦ
h

∥∥
L2(Ω;H)

+ ∥∥uΦ
h − uQ

h,k

∥∥
L2(Ω;H)

=: (I) + (II) + (III) + (IV).

By (3.5), (3.6) and (3.8) of Lemmas 3.1–3.3 we have

(I) � hd(αβ−1/2)(1 + ‖g‖H),

(II) � hmin{d(αβ−1/2), r, s}(1 + ‖g‖H),

(IV) � e−π2/(2k)
(

h−d/2 + ‖g‖H

)
� e−π2/(2k)h−d/2(1 + ‖g‖H),

and by (3.4) the third term vanishes: (III) = 0. Thus, the assertion is proven. �
In Section 4 we will not only verify the above derived rate of strong convergence by means of

numerical experiments but also investigate weak-type errors. The following result is proven similarly to
Theorem 2.10.

Corollary 3.4 Let the assumptions of Theorem 2.10 be satisfied. Then there exists a constant C > 0
independent of h ∈ (0, h0) and k ∈ (0, k0) such that the following weak-type error estimate between the
approximation uQ

h,k in (2.18) and the solution u to (2.8) holds:

∣∣∣‖u‖2
L2(Ω;H) − ∥∥uQ

h,k

∥∥2
L2(Ω;H)

∣∣∣ � C
(

hmin{d(2αβ−1), r, s} + e−π2/(2k)
)

‖g‖2
H (3.9)

+ C
(

hmin{d(2αβ−1), r} + e−π2/kh−d + e−π2/(2k) + e−π2/(2k)fα,β(h)
)

,

where fα,β(h) := hd(αβ−1), if αβ �= 1, and fα,β(h) := | ln(h)| if αβ = 1.
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Proof. First we note that the norm on L2(Ω; H) attains the following values for u in (2.8), uNh
in (3.1)

and uΦ
h in (3.3):

‖u‖2
L2(Ω;H) =

∑
j∈N

λ
−2β
j

(
1 + (g, ej)

2
H

)
,

∥∥uNh

∥∥2
L2(Ω;H)

=
Nh∑
j=1

λ
−2β
j

(
1 + (g, ej)

2
H

)
,

∥∥uΦ
h

∥∥2
L2(Ω;H)

=
Nh∑
j=1

λ
−2β
j,h

(
1 + (g, ej,h)

2
H

)
= ∥∥L−β

h Πhg
∥∥2

H + ∥∥L−β
h W E

h

∥∥2
L2(Ω;H)

.

Again we partition the error,∣∣∣‖u‖2
L2(Ω;H) − ∥∥uQ

h,k

∥∥2
L2(Ω;H)

∣∣∣ � ∣∣∣‖u‖2
L2(Ω;H) − ∥∥uNh

∥∥2
L2(Ω;H)

∣∣∣+ ∣∣∣∥∥uNh

∥∥2
L2(Ω;H)

− ∥∥uΦ
h

∥∥2
L2(Ω;H)

∣∣∣
+
∣∣∣∥∥uΦ

h

∥∥2
L2(Ω;H)

− ∥∥uQ
h,k

∥∥2
L2(Ω;H)

∣∣∣
=: (I) + (II) + (III),

and bound every term separately. By applying similar steps as in the proofs of Lemmas 3.1–3.2 we
obtain for the first two terms

(I) =
∑
j>Nh

λ
−2β
j

(
1 + (g, ej)

2
H

)
� hd(2αβ−1)

(
1 + ‖g‖2

H

)
,

as well as

(II) =
Nh∑
j=1

(
λ

−2β
j − λ

−2β
j,h

) (
1 + (g, ej,h)

2
H

)
+

Nh∑
j=1

λ
−2β
j (g, ej − ej,h)H(g, ej + ej,h)H

� 2β
(

1 + ‖g‖2
H

) Nh∑
j=1

λ
−2β−1
j (λj,h − λj) + 2 ‖g‖2

H

Nh∑
j=1

λ
−2β
j ‖ej − ej,h‖H

� hr
(

1 + ‖g‖2
H

) Nh∑
j=1

λ
q−2β−1
j + hs‖g‖2

H

Nh∑
j=1

λ
q/2−2β
j

� hmin{d(2αβ−1), r} (1 + ‖g‖2
H

)
+ hmin{d(2αβ−1), s}‖g‖2

H ,

since dα(q − 1) � r and dαq/2 � s as assumed in (2.19). For the third term we find

(III) �
∣∣∣∥∥Qβ

h,kΠhg
∥∥2

H − ∥∥L−β
h Πhg

∥∥2
H

∣∣∣+ ∣∣∣∥∥Qβ
h,kW

E
h

∥∥2
L2(Ω;H)

− ∥∥L−β
h W E

h

∥∥2
L2(Ω;H)

∣∣∣
=: (IIIa) + (IIIb).
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Table 1 Theoretical strong and weak-type convergence rates

Calibration Rate of convergence

Strong error (2.20) k � − π2

2dαβ ln(h)
min{d(αβ − 1/2), r, s}

Weak-type error (3.9) k � − π2

2Kα,β(h)

{
min{d(2αβ − 1), r} if g = 0
min{d(2αβ − 1), r, s} otherwise

Since ‖L−β
h ‖L(Vh)

= λ
−β
1,h and ‖Qβ

h,k‖L(Vh)
� λ

−β
1,h for sufficiently small k ∈ (0, k0) we conclude with

(3.7) of Lemma 3.3 that

(IIIa) =
∣∣∣((Qβ

h,k − L−β
h

)
Πhg,

(
Qβ

h,k + L−β
h

)
Πhg

)
H

∣∣∣ � e−π2/(2k)‖g‖2
H ,

(IIIb) =
∣∣∣∥∥(Qβ

h,k − L−β
h

)
W E

h

∥∥2
L2(Ω;H)

+ 2
((

Qβ
h,k − L−β

h

)
W E

h , L−β
h W E

h

)
L2(Ω;H)

∣∣∣
�

Nh∑
j=1

∥∥(Qβ
h,k − L−β

h

)
ej,h

∥∥2
H + 2

∣∣∣ Nh∑
j=1

λ
−β
j,h

((
Qβ

h,k − Lβ
h

)
ej,h, ej,h

)
H

∣∣∣

� e−π2/kNh + e−π2/(2k)
Nh∑
j=1

λ
−β
j,h � e−π2/kh−d + e−π2/(2k)

(
1 + fα,β(h)

)
,

where we have used Assumption 2.6 in the last estimate. This proves (3.9). �

Remark 3.5 The error estimates in (2.20) and (3.9) imply that the distance of the quadrature nodes k
has to be adjusted to the finite element mesh size h. Table 1 shows the calibration between h and k for
error studies of strong and weak type as well as the corresponding theoretical convergence rates. For the
calibration we set

Kα,β(h) :=

⎧⎪⎪⎨⎪⎪⎩
dαβ ln(h), αβ < 1,

d ln(h) − max{0, ln(| ln(h)|)}, αβ = 1,

d(2αβ − 1) ln(h), αβ > 1.

Remark 3.6 In the nonfractional case β = 1 the discretized problem (3.3) is also nonfractional.
Therefore realizations of its solution uΦ

h = L−1
h (Πhg+W Φ

h ) can be computed directly and no quadrature
is needed. If β ∈ (n, n + 1] for some n ∈ N one may apply the above-described method and error
estimates to L̃ := Ln+1 and β̃ := β

n+1 ∈ (0, 1]. Since, however, the finite element theory for the
operator L̃ may not be trivial, an alternative is to use an ‘iterated finite element method’, i.e., to define
the approximation by Qβ−n

h,k L−n
h (Πhg + W Φ

h ).
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4. An application and numerical examples

In the following numerical experiment we take up the SPDE from (1.2) in Section 1. More precisely,
with the objective of generating computationally efficient approximations of Gaussian Matérn fields on
the unit cube D := (0, 1)d in d = 1, 2, 3 spatial dimensions, we consider the following problem:(

κ2 − Δ
)β

u(x) = W(x), x ∈ D, (4.1a)

u(x) = 0, x ∈ ∂D, (4.1b)

and study the above-presented numerical method generating the approximation uQ
h,k in (2.18). As already

observed in Example 2.2 the exponent of the eigenvalue growth is given by α = 2/d in this case.
Furthermore, using a finite element discretization on uniform meshes with continuous, piecewise

linear basis functions, Assumption 2.6 is satisfied for this problem in all three dimensions for the values
r = s = q = 2; see Example 2.7. The condition in (2.19) of Theorem 2.10 becomes β > d/4. We
emphasize that this assumption is meaningful also from the statistical point of view; on all of Rd,
β >d/4 corresponds to a positive smoothness parameter ν >0 of the Matérn covariance function (1.1).

Thus, if the quadrature step size k and the finite element mesh width h are calibrated as indicated
in Table 1 the theoretical rates of convergence for β ∈ (d/4, 1) are 2β − d/2 for the strong error and
min{4β − d, 2} for the weak-type error according to Theorem 2.10 and Corollary 3.4.

For problem (4.1) with κ = 0.5 we investigate the empirical convergence rates of the following:

(i) strong error for d = 1, 2, 3 and β = 2d+n
8 , n ∈ {1, . . . , 7 − 2d};

(ii) weak-type error for d = 1, 2, 3 and β = 2d+1
8 .

In each dimension we use a finite element method in space with continuous, piecewise linear basis
functions on uniform meshes with mesh diameter h, mesh nodes x1, . . . , xNh

and mass matrix M. We
choose k = −1/(β ln h). The numbers of finite element basis functions and the corresponding numbers
of quadrature nodes depending on β used in the strong error study are shown in Table 2.

Table 2 Numbers of finite element basis functions on the considered meshes
for d = 1, 2, 3 as well as the corresponding numbers of quadrature nodes as a
function of β for the strong error study

β
Nh 3/8 4/8 5/8 6/8 7/8

d = 1

127 37 61 99 176 408
255 48 77 129 229 533
511 60 99 163 291 675

1023 73 121 200 357 832

d = 2

961 — — 43 75 171
3969 — — 62 109 253

16129 — — 86 152 352
65025 — — 113 203 469

d = 3
729 — — — — 55

6859 — — — — 105
59319 — — — — 172
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For (i), measuring the strong mean-square error between the exact solution u to our model problem
(4.1) and the approximation uQ

h,k in (2.18), we proceed as follows: first, samples of an overkill
approximation of the white noise

Wok :=
Nok∑
θ1=1

. . .

Nok∑
θd=1

ξ(θ1,...,θd)e(θ1,...,θd)

are generated and evaluated on a uniform overkill mesh of �D with Nd
ok nodes. Here {ξθ } are

independent standard normally distributed random variables and {eθ } are the eigenfunctions in (2.6).
The approximation Wok corresponds to a truncated Karhunen–Loève expansion with Nd

ok terms. From
this samples of the overkill solution uok are obtained via

uok := (
κ2 − Δ

)−βWok =
Nok∑
θ1=1

. . .

Nok∑
θd=1

λ
−β

(θ1,...,θd)ξ(θ1,...,θd)e(θ1,...,θd),

where {λθ } are the eigenvalues from (2.7). For the sake of generating comparable samples of the
approximation uQ

h,k we consider the same realizations of Wok and use the load vector b̃ with entries

b̃i = (Wok, φi,h)L2(D) instead of b ∼ N (0, M) from Remark 2.9, as
(
(W , φi,h)L2(D)

)Nh
i=1 ∼ N (0, M),

and we treat Wok as the true white noise. The resulting approximation is denoted by ũh,k. We choose
Nok = 218 + 1 for d = 1, Nok = 212 + 1 for d = 2 and Nok = 5 · 26 + 1 for d = 3.

For each value of β and in every spatial dimension we use 50 samples of Wok to generate samples

u(1)
ok , . . . , u(50)

ok of the overkill solution and of the numerical approximation ũ(1)
h,k , . . . , ũ(50)

h,k for every mesh
size h. The observed strong errors are then computed as the average L2-errors

err := 1
50

50∑
i=1

√(
v(i)

)TM v(i), v(i)
j := u(i)

ok(xj) − ũ(i)
h,k(xj).

The results are shown in the first three panels of Fig. 1. The data set {(h�, err�)}� is then used to compute
the observed rate of convergence r as the least-squares solution to the linear regression ln err = c+ r ln h
for each combination of (d, β). As shown in Table 3 the resulting observed rates of convergence are in
accordance with the theoretical values predicted by Theorem 2.10.

For (ii) we study the weak-type error
∣∣E[‖u‖2

L2(D)

] − E
[‖uQ

h,k‖2
L2(D)

]∣∣ addressed in Corollary 3.4.
Note that for this study no sample-wise comparison is needed and thus the load vector is sampled via
b ∼ N (0, M) as discussed in Remark 2.9. The variance of the exact solution can be computed directly
from the known eigenvalues of the differential operator as E

[‖u‖2
L2(D)

] = ∑
θ λ

−2β

θ . The variance of

uQ
h,k is approximated via Monte Carlo integration by

E
[
‖uQ

h,k‖2
L2(D)

]
≈ 1

NMC

NMC∑
i=1

(
u(i))TM u(i), u(i)

j := u(i)
h,k(xj),

where the number of Monte Carlo samples is NMC = 103 and u(i)
h,k denotes a realization of the numerical

approximation uQ
h,k. The observed weak-type errors and the observed rates of convergence are displayed
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Fig. 1. The panels in the first row show the observed strong error for different values of β and d = 1, 2. In the third graph the
observed strong error for β = 7/8 and d = 1, 2, 3 is displayed. The corresponding observed strong convergence rates are shown
in Table 3. The final graph shows the observed average weak-type errors for three experiments in d = 1, 2, 3 dimensions. For all
of them the theoretical rate of convergence is 0.5 and the observed rates are shown in the legend. All errors are shown as functions
of the mesh size h used in the computations in a log-log scale.

Table 3 Observed (respectively theoretical) rates of convergence for the strong errors shown in Fig. 1

β
3/8 4/8 5/8 6/8 7/8

d = 1 0.25 (0.25) 0.50 (0.5) 0.75 (0.75) 1.00 (1) 1.21 (1.25)
d = 2 — — 0.29 (0.25) 0.51 (0.5) 0.74 (0.75)
d = 3 — — — — 0.26 (0.25)

in the fourth panel of Fig. 1. The theoretical rate of convergence predicted by Corollary 3.4 is 0.5 for all
three cases.

5. Conclusion

We have considered the fractional-order equation (2.8) with Gaussian white noise in a Hilbert space
setting. We have shown that the fractional operator Lβ extends to an isometric isomorphism between the
Ḣ-spaces in (2.4). From this result and the mean-square regularity of the white noise with respect to the
Ḣ-spaces we have deduced existence and uniqueness of a solution u to (2.8) with a certain regularity.
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We have proposed the approximation uQ
h,k in (2.18) based on two numerical ingredients: (i). finite-

dimensional subspaces Vh of Ḣ1 and (ii) the quadrature approximation (2.16) of the inverse fractional
operator. The most advantageous and novel properties of the corresponding numerical scheme are (a)
that only solutions to integer-order (i.e., local) elliptic equations have to be computed and (b) that it does
not require the knowledge of the eigenfunctions of the differential operator L.

Our main result, Theorem 2.10, shows strong mean-square convergence of the approximation uQ
h,k

to the exact solution u. If the quadrature step size k and the finite element mesh width h are calibrated
appropriately, see Table 1, the resulting strong convergence rate depends only on the fractional-order
β, the dimension d, the eigenvalue growth α of the operator L and the approximation properties of the
finite element spaces. In order to prove this result we have partitioned the strong error into three terms:
the truncation error, the error caused by the finite element discretization and the error of the quadrature
approximation. We have derived bounds for each of these error terms separately in Sections 3.1–3.3. By
means of similar techniques we have proven a weak-type error estimate in Corollary 3.4.

Finally, in Section 4 we have applied the proposed numerical method to an explicit problem with
relevance for spatial statistics; the solution u to (4.1) can be interpreted as an approximation of a
Gaussian Matérn field on the unit cube (0, 1)d. The performed numerical experiments with continuous,
piecewise linear finite element basis functions in d = 1, 2, 3 spatial dimensions verify the derived
theoretical strong and weak-type convergence rates; see Fig. 1 and Table 3.

We hope that these results and insights will prove valuable for applications in spatial statistics, which
often require sampling from (approximations of) Gaussian Matérn fields and their various extensions.
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