64 research outputs found

    2020, A Decisive Decade for NADPH Oxidases Inhibitors

    No full text
    International audienceNADPH oxidases (Noxs) represent an original pharmacological target because they are the only enzymes whose main function is to produce reactive oxygen species. It is also a double target with the need for stimulation in chronic granulomatosis and inhibition reported in other pathologies (vascular, cancerous, neurological, etc.). The complexity of the involvement of Noxs in pathophysiology has not yet made it possible to obtain a drug that effectively inhibits these enzymes at the clinical level. This issue of the Forum aims to take stock of the obstacles and limitations to the development of these inhibitors both in their preclinical and clinical evaluation

    Etude du rôle de la NADPH oxydase 1 dans la régulation de la migration des cellules d'adénocarcinome colique

    No full text
    AIX-MARSEILLE2-BU Pharmacie (130552105) / SudocSudocFranceF

    Reversion of resistance to oxaliplatin by inhibition of p38 MAPK in colorectal cancer cell lines: involvement of the calpain / Nox1 pathway

    No full text
    International audienceOxaliplatin is a major treatment for metastatic colorectal cancer, however its effectiveness is greatly diminished by the development of resistances. Our previous work has shown that oxaliplatin efficacy depends on the reactive oxygen species (ROS) produced by Nox1. In this report, we investigated Nox1 involvement in the survival mechanisms of oxaliplatin resistant cell lines that we have selected. Our results show that basal ROS production by Nox1 is increased in resistant cells. Whereas the transitory Nox1-dependent production of superoxide contributes to the cytotoxicity of oxaliplatin in sensitive cells, oxaliplatin treatment of resistant cells leads to a decrease in the production of superoxide associated with an increase of H2O2and a decreased cytotoxicity of oxaliplatin. We have shown that calpains regulate differently Nox1 according to the sensitivity of the cells to oxaliplatin. In sensitive cells, calpains inhibit Nox1 by cleaving NoxA1 leading to a transient ROS production necessary for oxaliplatin cytotoxic effects. In contrast, in resistant cells calpain activation is associated with an increase of Nox1 activity through Src kinases, inducing a strong and maintained ROS production responsible for cell survival. Using a kinomic study we have shown that this overactivation of Nox1 results in an increase of p38 MAPK activity allowing the resistant cells to escape apoptosis. Our results show that the modulation of Nox1 activity in the context of anticancer treatment remains complex. However, a strategy to maximize Nox1 activation while inhibiting the p38 MAPK-dependent escape routes appears to be an option of choice to optimize oxaliplatin efficiency

    Patupilone-Induced Apoptosis Is Mediated by Mitochondrial Reactive Oxygen Species through Bim Relocalization to Mitochondria

    No full text
    International audienceAmong the new microtubule-targeted agents, the epothilone family of molecules has shown promising anticancer potential, and clinical trials are currently underway for patupilone (epothilone B) in various cancer indications. In this study, we characterized novel aspects of patupilone's cellular action that may underlie its potent cytotoxicity in human neuroblastoma cells. Patupilone induced mitochondrial membrane potential collapse, mitochondrial morphological changes, and cytochrome c release, leading to apoptosis. Within the first 2 h, patupilone increased the generation of reactive oxygen species (ROS; i.e., superoxides and hydrogen peroxide, 33+/-6 and 51+/-3% increase, respectively), specifically from mitochondria. ROS scavengers and mitochondrial DNA depletion [rho(-) cells] significantly protected cells against patupilone cytotoxicity, indicating that ROS generation is a key event in the initial phase of apoptosis. Although the Bim expression level was not modified by patupilone, this proapoptotic protein accumulated in the mitochondrial compartment (2.4-fold increase at IC70) after only a 6-h treatment. In contrast, Bax and Bcl-2 mitochondrial levels were not changed during treatment. It is noteworthy that ROS inhibition prevented Bim relocalization to mitochondria and mitochondrial membrane changes induced by patupilone. Altogether, our data reveal that patupilone-mediated ROS production by mitochondria initiates the intrinsic signaling cascade by inducing Bim accumulation in mitochondria. These results might explain the superior activity of patupilone in tumor cells compared with paclitaxel that is, until now, the clinical reference among microtubule-stabilizing agents. Furthermore, our data highlight the importance of mitochondria that simultaneously assume the role of activator and integrator of apoptotic signals triggered by patupilone

    beta-eudesmol, a sesquiterpene from Teucrium ramosissimum, inhibits superoxide production, proliferation, adhesion and migration of human tumor cell

    No full text
    International audienceReactive oxygen species are well-known mediators of various biological responses. Recently, new homologues of the catalytic subunit of NADPH oxidase have been discovered in non phagocytic cells. These new homologues (Nox1–Nox5) produce low levels of superoxides compared to the phagocytic homologue Nox2/gp91phox. In this study we examined the effect of-eudesmol, a sesquiterpenoid alcohol isolated from Teucrium ramosissimum leaves, on proliferation, superoxide anion production, adhesion and migration of human lung (A549) and colon (HT29 and Caco-2) cancer cell lines. Proliferation of tumor cells was inhibited by β-eudesmol. It also significantly inhibited superoxide production in A549 cells. Furthermore , β-eudesmol inhibited adhesion and migration of A549 and HT29 cell. These results demonstrate that β-eudesmol may be a novel anticancer agent for the treatment of lung and colon cancer by different ways: by inhibition of superoxide production or by blocking proliferation, adhesion and migration

    Gemcitabine: An Alternative Treatment for Oxaliplatin-Resistant Colorectal Cancer

    No full text
    International audienceResistance to treatments is one of the leading causes of cancer therapy failure. Oxaliplatin is a standard chemotherapy used to treat metastatic colorectal cancer. However, its efficacy is greatly reduced by the development of resistances. In a previous study, we deciphered the mechanisms leading to oxaliplatin resistance and highlighted the roles played by ROS production and the p38 MAPK pathway in this phenomenon. In this report, we studied the effects of different chemotherapy molecules on our oxaliplatin-resistant cells to identify alternative treatments. Among all the studied molecules, gemcitabine was the only one to present a major cytotoxic effect on oxaliplatin-resistant cancer cells both in vivo and in vitro. However, the combination of oxaliplatin and gemcitabine did not present any major interest. Indeed, the study of combination efficiency using Chou and Talalay’s method showed no synergy between oxaliplatin and gemcitabine. Using PamGene technology to decipher gemcitabine’s effects on oxaliplatin-resistant cells, we were able to show that gemcitabine counteracts chemoresistance by strongly inhibiting the Akt and src/p38 MAPK pathways, leading to apoptosis induction and cell death. In view of these results, gemcitabine could be an interesting alternative therapy for patients with colorectal cancer not responding to oxaliplatin-based protocols such as FOLFOX
    • …
    corecore