182 research outputs found

    Superconducting BSCCO Ceramics as Additive to the Zinc Electrode Mass in the Rechargeable Nickel-Zinc Batteries

    Get PDF
    The electronic conductivity of the main component of the zinc electrode in the rechargeable zinc-nickel battery – ZnO,  is rather poor and this is the main reason for the electrochemical heterogeneity of the anode mass and the loss of active surface area during charge/discharge cycling with a corresponding negative effect on the electrode characteristics In the present work, the possibility of application of superconductive cuprate Bi-Pb-Sr-Ca-Cu-O (BSCCO) ceramic as a multifunctional conductive additive to the zinc electrode mass is studied. Powder samples of the BSCCO ceramic Bi1,7Pb0,3Sr2Ca2Cu3Ox are produced by two-stage solid-state synthesis and they are physicochemically characterized. The XRD patterns and SEM observation reveal a well crystallized single phase of superconducting 2212 BSCCO system with average crystallite size 5-10 µm. The chemical stability of BSCCO ceramics in highly alkaline medium of the Ni-Zn battery is confirmed by structural and morphological analysis (XRD, SEM and EDX) of the samples before and after prolong exposure (96 h) to 7M KOH. The electrochemical tests are carried out by a specially designed prismatic alkaline Ni-Zn battery cell with conventional sintered type nickel electrodes and pasted zinc electrode with active electrode mass based on ZnO (88 wt.%) and addition of BSCCO powder or acetylene black as conductive additives. The study show that the zinc electrode with BSCCO superconducting ceramic additive exhibits very good cycleability, remarkable capacity stability and much higher discharge capacity at prolong charge/discharge cycling in comparison to the  zinc electrode with the “classic” carbon conductive additive. It is suggested that the addition of BSCCO ceramics improves not only conductivity of the electrode mass and reduces the gas evolution but also stabilizes porosity structure. The results obtained prove the possibility of application of superconducting BSCCO ceramics as a multifunctional additive to the active mass of the zinc electrodes for alkaline battery systems

    Magneto-Optical and Multiferroic Properties of Transition-Metal (Fe, Co, or Ni)-Doped ZnO Layers Deposited by ALD

    Get PDF
    ZnO doped with transition metals (Co, Fe, or Ni) that have non-compensated electron spins attracts particular interest as it can induce various magnetic phenomena and behaviors. The advanced atomic layer deposition (ALD) technique makes it possible to obtain very thin layers of doped ZnO with controllable thicknesses and compositions that are compatible with the main microelectronic technologies, which further boosts the interest. The present study provides an extended analysis of the magneto optical MO Kerr effect and the dielectric properties of (Co, Fe, or Ni)-doped ZnO films prepared by ALD. The structural, magneto optical, and dielectric properties were considered in relation to the technological details of the ALD process and the corresponding dopant effects. All doped samples show a strong MO Kerr behavior with a substantial magnetization response and very high values of the Kerr polarization angle, especially in the case of ZnO/Fe. In addition, the results give evidence that Fe-doped ZnO also demonstrates a ferroelectric behavior. In this context, the observed rich and versatile physical nature and functionality open up new prospects for the application of these nanostructured materials in advanced electronic, spintronic, and optical devices

    Effect of Ni and Al substitution on the magnetic properties of Y-type hexaferrite Ba0.5Sr1.5Zn0.5Ni1.5Fe11.92Al0.08O22powders

    Full text link
    peer reviewedThe effect is reported of substituting the non-magnetic Zn2+ cations with magnetic Ni2+ cations, and of the magnetic Fe3+ cations with non-magnetic Al3+ cations in Ba0.5Sr1.5Zn0.5Ni1.5Fe11.92Al0.08O22 on the resulting magnetic properties. The Y-type hexaferrite powders were synthesized by citric acid sol-gel auto-combustion, followed by appropriate thermal annealing. The saturation magnetization values (Ms ) in a magnetic field of 50 kOe were 36 emu/g and 30 emu/g at 4.2 K and 300 K, respectively. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization vs. temperature (4.2-300 K) were measured in dc magnetic fields of 50 Oe, 100 Oe and 500 Oe. The changes resulting from the dissimilar cationic substitutions were identified and discussed

    Magnetic phase transitions in Ba0.5Sr1.5Zn2Fe11.92Al0.08O22hexaferrites

    Full text link
    peer reviewedWe report studies on the effect of substituting the magnetic Fe3+ cations with nonmagnetic Al3+ cations in Y-type hexaferrite Ba0.5Sr1.5Zn2Fe11.92Al0.08O22 powders on their magnetic properties and especially on the magnetic phase transitions responsible for observing the magnetoelectric effect. In this research, the Y-type hexaferrite powders were synthesized by citric acid sol-gel auto-combustion. After the auto-combustion process, the precursor powders were annealed at 1170 °C in air to obtain the Y-type hexaferrite materials. The effects of Al substitution on the structural, microstructural properties and phase content were investigated in detail using X-ray powder diffraction and scanning electron microscopy. Hysteresis measurements were performed by a physical-property-measurement-system (PPMS) (Quantum Design) at 4.2 K and at room temperature. Dc-magnetic measurements of the temperature dependence of the magnetization at magnetic fields of 50 Oe, 100 Oe and 500 Oe were used to determine the effect of applying a magnetic field on the temperature of magnetic-phase transitions. We demonstrated that the helical spin state can be modified further by varying the magnetic field

    Effect of cation substitutions in Y-type Ba0.5Sr1.5Me2Fe12O22hexaferrites on the magnetic phase transitions

    Full text link
    peer reviewedWe investigated the magnetic properties and magnetic phase transition in Y-type Ba0.5Sr1.5NiMgFe12O22 hexaferrite powder prepared by citrate sol-gel spontaneous combustion. The saturation magnetisation value of 32 emu/g at 4.2 K was lowered to 24 emu/g at 300 K. The magnetisations curves did not saturate even at a magnetic field of 50 kOe for both temperatures - 4.2 K and 300 K. A step-like behaviour appeared in the initial magnetisation curve at 4.2 K. A magnetic phase transformation from a spiral magnetic ordering to a conical spin one was observed at 40 K
    • …
    corecore