2,691 research outputs found

    Computation of the Vortex Free Energy in SU(2) Gauge Theory

    Get PDF
    We present the first measurement of the vortex free-energy order parameter at weak coupling for SU(2) in simulations employing multihistogram methods. The result shows that the excitation probability for a sufficiently thick vortex in the vacuum tends to unity. This is rigorously known to provide a necessary and sufficient condition for maintaining confinement at weak coupling in SU(N) gauge theories.Comment: 7 pages, LaTeX with 3 eps figures, minor changes, replacement of Fig.

    Center Vortices, Nexuses, and Fractional Topological Charge

    Get PDF
    It has been remarked in several previous works that the combination of center vortices and nexuses (a nexus is a monopole-like soliton whose world line mediates certain allowed changes of field strengths on vortex surfaces) carry topological charge quantized in units of 1/N for gauge group SU(N). These fractional charges arise from the interpretation of the standard topological charge integral as a sum of (integral) intersection numbers weighted by certain (fractional) traces. We show that without nexuses the sum of intersection numbers gives vanishing topological charge (since vortex surfaces are closed and compact). With nexuses living as world lines on vortices, the contributions to the total intersection number are weighted by different trace factors, and yield a picture of the total topological charge as a linking of a closed nexus world line with a vortex surface; this linking gives rise to a non-vanishing but integral topological charge. This reflects the standard 2\pi periodicity of the theta angle. We argue that the Witten-Veneziano relation, naively violating 2\pi periodicity, scales properly with N at large N without requiring 2\pi N periodicity. This reflects the underlying composition of localized fractional topological charge, which are in general widely separated. Some simple models are given of this behavior. Nexuses lead to non-standard vortex surfaces for all SU(N) and to surfaces which are not manifolds for N>2. We generalize previously-introduced nexuses to all SU(N) in terms of a set of fundamental nexuses, which can be distorted into a configuration resembling the 't Hooft-Polyakov monopole with no strings. The existence of localized but widely-separated fractional topological charges, adding to integers only on long distance scales, has implications for chiral symmetry breakdown.Comment: 15 pages, revtex, 6 .eps figure

    A spring-block model for Barkhausen noise

    Full text link
    A simple mechanical spring-block model is introduced for studying magnetization phenomena and in particularly the Barkhausen noise. The model captures and reproduces the accepted microscopic picture of domain wall movement and pinning. Computer simulations suggest that this model is able to reproduce the main characteristics of hysteresis loops and Barkhausen jumps. In the thermodynamic limit the statistics of the obtained Barkhausen jumps follows several scaling laws, in qualitative agreement with the experimental results. The simplicity of the model and the invoked mechanical analogies makes it attractive for computer simulations and pedagogical purposes.Comment: Revtex, 8 pages, 6 figure

    Nexus solitons in the center vortex picture of QCD

    Get PDF
    It is very plausible that confinement in QCD comes from linking of Wilson loops to finite-thickness vortices with magnetic fluxes corresponding to the center of the gauge group. The vortices are solitons of a gauge-invariant QCD action representing the generation of gluon mass. There are a number of other solitonic states of this action. We discuss here what we call nexus solitons, in which for gauge group SU(N), up to N vortices meet a a center, or nexus, provided that the total flux of the vortices adds to zero (mod N). There are fundamentally two kinds of nexuses: Quasi-Abelian, which can be described as composites of Abelian imbedded monopoles, whose Dirac strings are cancelled by the flux condition; and fully non-Abelian, resembling a deformed sphaleron. Analytic solutions are available for the quasi-Abelian case, and we discuss variational estimates of the action of the fully non-Abelian nexus solitons in SU(2). The non-Abelian nexuses carry Chern-Simons number (or topological charge in four dimensions). Their presence does not change the fundamentals of confinement in the center-vortex picture, but they may lead to a modified picture of the QCD vacuum.Comment: LateX, 24 pages, 2 .eps figure

    Effects of Modulated and Continuous Microwave Irradiation on Pyroantimonate Precipitable Calcium Content in Junctional Complex of Mouse Small Intestine

    Get PDF
    The pyroantimonate precipitable calcium content of intestinal epithelial cells was investigated in mice following total body irradiation with 2450 MHz continuous and low frequency (16 Hz) square modulated waves. In the control animals the reaction products appeared in the intercellular space of adjacent cells including intermediate junctions and desmosomes and were absent in the area of tight junctions. Immediately after low frequency modulated microwave irradiation at 0.5 and 1mW/cm2 power densities, a rapid distribution of pyroantimonate precipitable calcium content was observed. The pyroantimonate deposits were located on the cytoplasmic side of lateral membrane, in the area of junctional complex, including tight junction, and in other parts of lateral plasma membrane. These changes were reversible and 24 hours after the irradiation the distribution of pyroantimonate deposits was similar to the control. Continuous waves with same energy not altered the distribution of precipitable calcium. We conclude the low frequency modulated microwave irradiation can modify the calcium distribution without heat effects

    Center vortices and confinement vs. screening

    Full text link
    We study adjoint and fundamental Wilson loops in the center-vortex picture of confinement, for gauge group SU(N) with general N. There are N-1 distinct vortices, whose properties, including collective coordinates and actions, we study. In d=2 we construct a center-vortex model by hand so that it has a smooth large-N limit of fundamental-representation Wilson loops and find, as expected, confinement. Extending an earlier work by the author, we construct the adjoint Wilson-loop potential in this d=2 model for all N, as an expansion in powers of ρ/M2\rho/M^2, where ρ\rho is the vortex density per unit area and M is the vortex inverse size, and find, as expected, screening. The leading term of the adjoint potential shows a roughly linear regime followed by string breaking when the potential energy is about 2M. This leading potential is a universal (N-independent at fixed fundamental string tension KFK_F) of the form (KF/M)U(MR)(K_F/M)U(MR), where R is the spacelike dimension of a rectangular Wilson loop. The linear-regime slope is not necessarily related to KFK_F by Casimir scaling. We show that in d=2 the dilute vortex model is essentially equivalent to true d=2 QCD, but that this is not so for adjoint representations; arguments to the contrary are based on illegal cumulant expansions which fail to represent the necessary periodicity of the Wilson loop in the vortex flux. Most of our arguments are expected to hold in d=3,4 also.Comment: 29 pages, LaTex, 1 figure. Minor changes; references added; discussion of factorization sharpened. Major conclusions unchange
    corecore