159 research outputs found

    High Energy Positrons and Gamma Radiation from Decaying Constituents of a two-component Dark Atom Model

    Full text link
    We study a two component dark matter candidate inspired by the Minimal Walking Technicolor model. Dark matter consists of a dominant SIMP-like dark atom component made of bound states between primordial helium nuclei and a doubly charged technilepton, and a small WIMP-like component made of another dark atom bound state between a doubly charged technibaryon and a technilepton. This scenario is consistent with direct search experimental findings because the dominant SIMP component interacts too strongly to reach the depths of current detectors with sufficient energy to recoil and the WIMP-like component is too small to cause significant amount of events. In this context a metastable technibaryon that decays to e+e+e^+e^+, ÎĽ+ÎĽ+\mu^+ \mu^+ and Ď„+Ď„+\tau^+ \tau^+ can in principle explain the observed positron excess by AMS-02 and PAMELA, while being consistent with the photon flux observed by FERMI/LAT. We scan the parameters of the model and we find the best possible fit to the latest experimental data. We find that there is a small range of parameter space that this scenario can be realised under certain conditions regarding the cosmic ray propagation and the final state radiation. This range of parameters fall inside the region where the current run of LHC can probe, and therefore it will soon be possible to either verify or exclude conclusively this model of dark matter.Comment: 11 pages, 4 figures, invited contribution to the special issue "Composite dark matter" of International Journal of Modern Physics D. arXiv admin note: text overlap with arXiv:1411.365

    Photons in gapless color-flavor-locked quark matter

    Full text link
    We calculate the Debye and Meissner masses of a gauge boson in a material consisting of two species of massless fermions that form a condensate of Cooper pairs. We perform the calculation as a function of temperature, for the cases of neutral Cooper pairs and charged Cooper pairs, and for a range of parameters including gapped quaisparticles, and ungapped quasiparticles with both quadratic and linear dispersion relations at low energy. Our results are relevant to the behavior of photons and gluons in the gapless color-flavor-locked phase of quark matter. We find that the photon's Meissner mass vanishes, and the Debye mass shows a non-monotonic temperature dependence, and at temperatures of order the pairing gap it drops to a minimum value of order sqrt(alpha) times the quark chemical potential. We confirm previous claims that at zero temperature an imaginary Meissner mass can arise from a charged gapless condensate, and we find that at finite temperature this can also occur for a gapped condensate.Comment: 22 pages, LaTeX; expanded discussion of temperature dependenc

    Gapless phases of color-superconducting matter

    Full text link
    We discuss gapless color superconductivity for neutral quark matter in beta equilibrium at zero as well as at nonzero temperature. Basic properties of gapless superconductors are reviewed. The current progress and the remaining problems in the understanding of the phase diagram of strange quark matter are discussed.Comment: 8 pages, 2 figures. Plenary talk at Strangeness in Quark Matter 2004 (SQM2004), Cape Town, South Africa, 15-20 September 2004. Minor correction

    Strong Interactive Massive Particles from a Strong Coupled Theory

    Get PDF
    Minimal walking technicolor models can provide a nontrivial solution for cosmological dark matter, if the lightest technibaryon is doubly charged. Technibaryon asymmetry generated in the early Universe is related to baryon asymmetry and it is possible to create excess of techniparticles with charge (-2). These excessive techniparticles are all captured by 4He^4He, creating \emph{techni-O-helium} tOHetOHe ``atoms'', as soon as 4He^4He is formed in Big Bang Nucleosynthesis. The interaction of techni-O-helium with nuclei opens new paths to the creation of heavy nuclei in Big Bang Nucleosynthesis. Due to the large mass of technibaryons, the tOHetOHe ``atomic'' gas decouples from the baryonic matter and plays the role of dark matter in large scale structure formation, while structures in small scales are suppressed. Nuclear interactions with matter slow down cosmic techni-O-helium in Earth below the threshold of underground dark matter detectors, thus escaping severe CDMS constraints. On the other hand, these nuclear interactions are not sufficiently strong to exclude this form of Strongly Interactive Massive Particles by constraints from the XQC experiment. Experimental tests of this hypothesis are possible in search for tOHetOHe in balloon-borne experiments (or on the ground) and for its charged techniparticle constituents in cosmic rays and accelerators. The tOHetOHe ``atoms'' can cause cold nuclear transformations in matter and might form anomalous isotopes, offering possible ways to exclude (or prove?) their existence.Comment: 41 pages, 4 figure

    Muon Flux Limits for Majorana Dark Matter Particles

    Full text link
    We analyze the effects of capture of dark matter (DM) particles, with successive annihilations, predicted in the minimal walking technicolor model (MWT) by the Sun and the Earth. We show that the Super-Kamiokande (SK) upper limit on excessive muon flux disfavors the mass interval between 100-200 GeV for MWT DM with a suppressed Standard Model interaction (due to a mixing angle), and the mass interval between 0-1500 GeV for MWT DM without such suppression, upon making the standard assumption about the value of the local DM distribution. In the first case, the exclusion interval is found to be very sensitive to the DM distribution parameters and can vanish at the extreme of the acceptable values.Comment: 20 pages, 12 figures. The revised version has minor addition (without change of the result) as the following: 1) Comparison of our estimations with analogous previous ones is included in the Figure 7; a paragraph regarding it was added in Discussion. 2) The Introduction, Acknowledgements and References have been a little extende

    Linear confinement without dilaton in bottom-up holography for walking technicolour

    Full text link
    In PRD78(2008)055005 [arXiv:0805.1503 [hep-ph]] and PRD79(2009)075004 [arXiv:0809.1324 [hep-ph]], we constructed a holographic description of walking technicolour theories using both a hard- and a soft-wall model. Here, we show that the dilaton field becomes phenomenologically irrelevant for the spectrum of spin-one resonances once a term is included in the Lagrangian that mixes the Goldstone bosons and the longitudinal components of the axial vector mesons. We show how this mixing affects our previous results and we make predictions about how this description of technicolour can be tested.Comment: 7 pages, no figure

    Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking

    Get PDF
    We propose the hybrid gravity-gauge mediated supersymmetry breaking where the gravitino mass is about several GeV. The strong constraints on supersymmetry viable parameter space from the CMS and ATLAS experiments at the LHC can be relaxed due to the heavy colored supersymmetric particles, and it is consistent with null results in the dark matter (DM) direct search experiments such as XENON100. In particular, the possible maximal flavor and CP violations from the relatively small gravity mediation may naturally account for the recent LHCb anomaly. In addition, because the gravitino mass is around the asymmetric DM mass, we propose the asymmetric origin of the gravitino relic density and solve the cosmological coincident problem on the DM and baryon densities \Omega_{\rm DM}:\Omega_{B}\approx 5:1. The gravitino relic density arises from asymmetric metastable particle (AMP) late decay. However, we show that there is no AMP candidate in the minimal supersymmetric Standard Model (SM) due to the robust gaugino/Higgsino mediated wash-out effects. Interestingly, AMP can be realized in the well motivated supersymmetric SMs with vector-like particles or continuous U(1)_R symmetry. Especially, the lightest CP-even Higgs boson mass can be lifted in the supersymmetric SMs with vector-like particles.Comment: RevTex4, 21 pages, 1 figure, minor corrections, JHEP versio

    Asymmetric WIMP dark matter

    Full text link
    In existing dark matter models with global symmetries the relic abundance of dark matter is either equal to that of anti-dark matter (thermal WIMP), or vastly larger, with essentially no remaining anti-dark matter (asymmetric dark matter). By exploring the consequences of a primordial asymmetry on the coupled dark matter and anti-dark matter Boltzmann equations we find large regions of parameter space that interpolate between these two extremes. Interestingly, this new asymmetric WIMP framework can accommodate a wide range of dark matter masses and annihilation cross sections. The present-day dark matter population is typically asymmetric, but only weakly so, such that indirect signals of dark matter annihilation are not completely suppressed. We apply our results to existing models, noting that upcoming direct detection experiments will constrain a large region of the relevant parameter space.Comment: 32 pages, 6 figures, updated references, updated XENON100 bounds, typo in figure caption correcte

    Resolution of dark matter problem in f(T) gravity

    Full text link
    In this paper, we attempt to resolve the dark matter problem in f(T) gravity. Specifically, from our model we successfully obtain the flat rotation curves of galaxies containing dark matter. Further, we obtain the density profile of dark matter in galaxies. Comparison of our analytical results shows that our torsion-based toy model for dark matter is in good agreement with empirical data-based models. It shows that we can address the dark matter as an effect of torsion of the space.Comment: 14 pages, 3 figure

    Invisible Higgs and Dark Matter

    Get PDF
    We investigate the possibility that a massive weakly interacting fermion simultaneously provides for a dominant component of the dark matter relic density and an invisible decay width of the Higgs boson at the LHC. As a concrete model realizing such dynamics we consider the minimal walking technicolor, although our results apply more generally. Taking into account the constraints from the electroweak precision measurements and current direct searches for dark matter particles, we find that such scenario is heavily constrained, and large portions of the parameter space are excluded.Comment: arXiv admin note: text overlap with arXiv:0912.229
    • …
    corecore