397 research outputs found
On-Line Paging against Adversarially Biased Random Inputs
In evaluating an algorithm, worst-case analysis can be overly pessimistic.
Average-case analysis can be overly optimistic. An intermediate approach is to
show that an algorithm does well on a broad class of input distributions.
Koutsoupias and Papadimitriou recently analyzed the least-recently-used (LRU)
paging strategy in this manner, analyzing its performance on an input sequence
generated by a so-called diffuse adversary -- one that must choose each request
probabilitistically so that no page is chosen with probability more than some
fixed epsilon>0. They showed that LRU achieves the optimal competitive ratio
(for deterministic on-line algorithms), but they didn't determine the actual
ratio.
In this paper we estimate the optimal ratios within roughly a factor of two
for both deterministic strategies (e.g. least-recently-used and
first-in-first-out) and randomized strategies. Around the threshold epsilon ~
1/k (where k is the cache size), the optimal ratios are both Theta(ln k). Below
the threshold the ratios tend rapidly to O(1). Above the threshold the ratio is
unchanged for randomized strategies but tends rapidly to Theta(k) for
deterministic ones.
We also give an alternate proof of the optimality of LRU.Comment: Conference version appeared in SODA '98 as "Bounding the Diffuse
Adversary
Optimizing egalitarian performance in the side-effects model of colocation for data center resource management
In data centers, up to dozens of tasks are colocated on a single physical
machine. Machines are used more efficiently, but tasks' performance
deteriorates, as colocated tasks compete for shared resources. As tasks are
heterogeneous, the resulting performance dependencies are complex. In our
previous work [18] we proposed a new combinatorial optimization model that uses
two parameters of a task - its size and its type - to characterize how a task
influences the performance of other tasks allocated to the same machine.
In this paper, we study the egalitarian optimization goal: maximizing the
worst-off performance. This problem generalizes the classic makespan
minimization on multiple processors (P||Cmax). We prove that
polynomially-solvable variants of multiprocessor scheduling are NP-hard and
hard to approximate when the number of types is not constant. For a constant
number of types, we propose a PTAS, a fast approximation algorithm, and a
series of heuristics. We simulate the algorithms on instances derived from a
trace of one of Google clusters. Algorithms aware of jobs' types lead to better
performance compared with algorithms solving P||Cmax.
The notion of type enables us to model degeneration of performance caused by
using standard combinatorial optimization methods. Types add a layer of
additional complexity. However, our results - approximation algorithms and good
average-case performance - show that types can be handled efficiently.Comment: Author's version of a paper published in Euro-Par 2017 Proceedings,
extends the published paper with addtional results and proof
On the Structure of Equilibria in Basic Network Formation
We study network connection games where the nodes of a network perform edge
swaps in order to improve their communication costs. For the model proposed by
Alon et al. (2010), in which the selfish cost of a node is the sum of all
shortest path distances to the other nodes, we use the probabilistic method to
provide a new, structural characterization of equilibrium graphs. We show how
to use this characterization in order to prove upper bounds on the diameter of
equilibrium graphs in terms of the size of the largest -vicinity (defined as
the the set of vertices within distance from a vertex), for any
and in terms of the number of edges, thus settling positively a conjecture of
Alon et al. in the cases of graphs of large -vicinity size (including graphs
of large maximum degree) and of graphs which are dense enough.
Next, we present a new swap-based network creation game, in which selfish
costs depend on the immediate neighborhood of each node; in particular, the
profit of a node is defined as the sum of the degrees of its neighbors. We
prove that, in contrast to the previous model, this network creation game
admits an exact potential, and also that any equilibrium graph contains an
induced star. The existence of the potential function is exploited in order to
show that an equilibrium can be reached in expected polynomial time even in the
case where nodes can only acquire limited knowledge concerning non-neighboring
nodes.Comment: 11 pages, 4 figure
Bottleneck Routing Games with Low Price of Anarchy
We study {\em bottleneck routing games} where the social cost is determined
by the worst congestion on any edge in the network. In the literature,
bottleneck games assume player utility costs determined by the worst congested
edge in their paths. However, the Nash equilibria of such games are inefficient
since the price of anarchy can be very high and proportional to the size of the
network. In order to obtain smaller price of anarchy we introduce {\em
exponential bottleneck games} where the utility costs of the players are
exponential functions of their congestions. We find that exponential bottleneck
games are very efficient and give a poly-log bound on the price of anarchy:
, where is the largest path length in the
players' strategy sets and is the set of edges in the graph. By adjusting
the exponential utility costs with a logarithm we obtain games whose player
costs are almost identical to those in regular bottleneck games, and at the
same time have the good price of anarchy of exponential games.Comment: 12 page
Welfare guarantees for proportional allocations
According to the proportional allocation mechanism from the network
optimization literature, users compete for a divisible resource -- such as
bandwidth -- by submitting bids. The mechanism allocates to each user a
fraction of the resource that is proportional to her bid and collects an amount
equal to her bid as payment. Since users act as utility-maximizers, this
naturally defines a proportional allocation game. Recently, Syrgkanis and
Tardos (STOC 2013) quantified the inefficiency of equilibria in this game with
respect to the social welfare and presented a lower bound of 26.8% on the price
of anarchy over coarse-correlated and Bayes-Nash equilibria in the full and
incomplete information settings, respectively. In this paper, we improve this
bound to 50% over both equilibrium concepts. Our analysis is simpler and,
furthermore, we argue that it cannot be improved by arguments that do not take
the equilibrium structure into account. We also extend it to settings with
budget constraints where we show the first constant bound (between 36% and 50%)
on the price of anarchy of the corresponding game with respect to an effective
welfare benchmark that takes budgets into account.Comment: 15 page
On the Impact of Fair Best Response Dynamics
In this work we completely characterize how the frequency with which each
player participates in the game dynamics affects the possibility of reaching
efficient states, i.e., states with an approximation ratio within a constant
factor from the price of anarchy, within a polynomially bounded number of best
responses. We focus on the well known class of congestion games and we show
that, if each player is allowed to play at least once and at most times
any best responses, states with approximation ratio times the
price of anarchy are reached after best
responses, and that such a bound is essentially tight also after exponentially
many ones. One important consequence of our result is that the fairness among
players is a necessary and sufficient condition for guaranteeing a fast
convergence to efficient states. This answers the important question of the
maximum order of needed to fast obtain efficient states, left open by
[9,10] and [3], in which fast convergence for constant and very slow
convergence for have been shown, respectively. Finally, we show
that the structure of the game implicitly affects its performances. In
particular, we show that in the symmetric setting, in which all players share
the same set of strategies, the game always converges to an efficient state
after a polynomial number of best responses, regardless of the frequency each
player moves with
Truthful Multi-unit Procurements with Budgets
We study procurement games where each seller supplies multiple units of his
item, with a cost per unit known only to him. The buyer can purchase any number
of units from each seller, values different combinations of the items
differently, and has a budget for his total payment.
For a special class of procurement games, the {\em bounded knapsack} problem,
we show that no universally truthful budget-feasible mechanism can approximate
the optimal value of the buyer within , where is the total number of
units of all items available. We then construct a polynomial-time mechanism
that gives a -approximation for procurement games with {\em concave
additive valuations}, which include bounded knapsack as a special case. Our
mechanism is thus optimal up to a constant factor. Moreover, for the bounded
knapsack problem, given the well-known FPTAS, our results imply there is a
provable gap between the optimization domain and the mechanism design domain.
Finally, for procurement games with {\em sub-additive valuations}, we
construct a universally truthful budget-feasible mechanism that gives an
-approximation in polynomial time with a
demand oracle.Comment: To appear at WINE 201
The Price of Anarchy for Selfish Ring Routing is Two
We analyze the network congestion game with atomic players, asymmetric
strategies, and the maximum latency among all players as social cost. This
important social cost function is much less understood than the average
latency. We show that the price of anarchy is at most two, when the network is
a ring and the link latencies are linear. Our bound is tight. This is the first
sharp bound for the maximum latency objective.Comment: Full version of WINE 2012 paper, 24 page
A New Lower Bound for Deterministic Truthful Scheduling
We study the problem of truthfully scheduling tasks to selfish
unrelated machines, under the objective of makespan minimization, as was
introduced in the seminal work of Nisan and Ronen [STOC'99]. Closing the
current gap of on the approximation ratio of deterministic truthful
mechanisms is a notorious open problem in the field of algorithmic mechanism
design. We provide the first such improvement in more than a decade, since the
lower bounds of (for ) and (for ) by
Christodoulou et al. [SODA'07] and Koutsoupias and Vidali [MFCS'07],
respectively. More specifically, we show that the currently best lower bound of
can be achieved even for just machines; for we already get
the first improvement, namely ; and allowing the number of machines to
grow arbitrarily large we can get a lower bound of .Comment: 15 page
Path deviations outperform approximate stability in heterogeneous congestion games
We consider non-atomic network congestion games with heterogeneous players
where the latencies of the paths are subject to some bounded deviations. This
model encompasses several well-studied extensions of the classical Wardrop
model which incorporate, for example, risk-aversion, altruism or travel time
delays. Our main goal is to analyze the worst-case deterioration in social cost
of a perturbed Nash flow (i.e., for the perturbed latencies) with respect to an
original Nash flow. We show that for homogeneous players perturbed Nash flows
coincide with approximate Nash flows and derive tight bounds on their
inefficiency. In contrast, we show that for heterogeneous populations this
equivalence does not hold. We derive tight bounds on the inefficiency of both
perturbed and approximate Nash flows for arbitrary player sensitivity
distributions. Intuitively, our results suggest that the negative impact of
path deviations (e.g., caused by risk-averse behavior or latency perturbations)
is less severe than approximate stability (e.g., caused by limited
responsiveness or bounded rationality). We also obtain a tight bound on the
inefficiency of perturbed Nash flows for matroid congestion games and
homogeneous populations if the path deviations can be decomposed into edge
deviations. In particular, this provides a tight bound on the Price of
Risk-Aversion for matroid congestion games
- …