397 research outputs found

    On-Line Paging against Adversarially Biased Random Inputs

    Full text link
    In evaluating an algorithm, worst-case analysis can be overly pessimistic. Average-case analysis can be overly optimistic. An intermediate approach is to show that an algorithm does well on a broad class of input distributions. Koutsoupias and Papadimitriou recently analyzed the least-recently-used (LRU) paging strategy in this manner, analyzing its performance on an input sequence generated by a so-called diffuse adversary -- one that must choose each request probabilitistically so that no page is chosen with probability more than some fixed epsilon>0. They showed that LRU achieves the optimal competitive ratio (for deterministic on-line algorithms), but they didn't determine the actual ratio. In this paper we estimate the optimal ratios within roughly a factor of two for both deterministic strategies (e.g. least-recently-used and first-in-first-out) and randomized strategies. Around the threshold epsilon ~ 1/k (where k is the cache size), the optimal ratios are both Theta(ln k). Below the threshold the ratios tend rapidly to O(1). Above the threshold the ratio is unchanged for randomized strategies but tends rapidly to Theta(k) for deterministic ones. We also give an alternate proof of the optimality of LRU.Comment: Conference version appeared in SODA '98 as "Bounding the Diffuse Adversary

    Optimizing egalitarian performance in the side-effects model of colocation for data center resource management

    Full text link
    In data centers, up to dozens of tasks are colocated on a single physical machine. Machines are used more efficiently, but tasks' performance deteriorates, as colocated tasks compete for shared resources. As tasks are heterogeneous, the resulting performance dependencies are complex. In our previous work [18] we proposed a new combinatorial optimization model that uses two parameters of a task - its size and its type - to characterize how a task influences the performance of other tasks allocated to the same machine. In this paper, we study the egalitarian optimization goal: maximizing the worst-off performance. This problem generalizes the classic makespan minimization on multiple processors (P||Cmax). We prove that polynomially-solvable variants of multiprocessor scheduling are NP-hard and hard to approximate when the number of types is not constant. For a constant number of types, we propose a PTAS, a fast approximation algorithm, and a series of heuristics. We simulate the algorithms on instances derived from a trace of one of Google clusters. Algorithms aware of jobs' types lead to better performance compared with algorithms solving P||Cmax. The notion of type enables us to model degeneration of performance caused by using standard combinatorial optimization methods. Types add a layer of additional complexity. However, our results - approximation algorithms and good average-case performance - show that types can be handled efficiently.Comment: Author's version of a paper published in Euro-Par 2017 Proceedings, extends the published paper with addtional results and proof

    On the Structure of Equilibria in Basic Network Formation

    Full text link
    We study network connection games where the nodes of a network perform edge swaps in order to improve their communication costs. For the model proposed by Alon et al. (2010), in which the selfish cost of a node is the sum of all shortest path distances to the other nodes, we use the probabilistic method to provide a new, structural characterization of equilibrium graphs. We show how to use this characterization in order to prove upper bounds on the diameter of equilibrium graphs in terms of the size of the largest kk-vicinity (defined as the the set of vertices within distance kk from a vertex), for any k1k \geq 1 and in terms of the number of edges, thus settling positively a conjecture of Alon et al. in the cases of graphs of large kk-vicinity size (including graphs of large maximum degree) and of graphs which are dense enough. Next, we present a new swap-based network creation game, in which selfish costs depend on the immediate neighborhood of each node; in particular, the profit of a node is defined as the sum of the degrees of its neighbors. We prove that, in contrast to the previous model, this network creation game admits an exact potential, and also that any equilibrium graph contains an induced star. The existence of the potential function is exploited in order to show that an equilibrium can be reached in expected polynomial time even in the case where nodes can only acquire limited knowledge concerning non-neighboring nodes.Comment: 11 pages, 4 figure

    Bottleneck Routing Games with Low Price of Anarchy

    Full text link
    We study {\em bottleneck routing games} where the social cost is determined by the worst congestion on any edge in the network. In the literature, bottleneck games assume player utility costs determined by the worst congested edge in their paths. However, the Nash equilibria of such games are inefficient since the price of anarchy can be very high and proportional to the size of the network. In order to obtain smaller price of anarchy we introduce {\em exponential bottleneck games} where the utility costs of the players are exponential functions of their congestions. We find that exponential bottleneck games are very efficient and give a poly-log bound on the price of anarchy: O(logLlogE)O(\log L \cdot \log |E|), where LL is the largest path length in the players' strategy sets and EE is the set of edges in the graph. By adjusting the exponential utility costs with a logarithm we obtain games whose player costs are almost identical to those in regular bottleneck games, and at the same time have the good price of anarchy of exponential games.Comment: 12 page

    Welfare guarantees for proportional allocations

    Full text link
    According to the proportional allocation mechanism from the network optimization literature, users compete for a divisible resource -- such as bandwidth -- by submitting bids. The mechanism allocates to each user a fraction of the resource that is proportional to her bid and collects an amount equal to her bid as payment. Since users act as utility-maximizers, this naturally defines a proportional allocation game. Recently, Syrgkanis and Tardos (STOC 2013) quantified the inefficiency of equilibria in this game with respect to the social welfare and presented a lower bound of 26.8% on the price of anarchy over coarse-correlated and Bayes-Nash equilibria in the full and incomplete information settings, respectively. In this paper, we improve this bound to 50% over both equilibrium concepts. Our analysis is simpler and, furthermore, we argue that it cannot be improved by arguments that do not take the equilibrium structure into account. We also extend it to settings with budget constraints where we show the first constant bound (between 36% and 50%) on the price of anarchy of the corresponding game with respect to an effective welfare benchmark that takes budgets into account.Comment: 15 page

    On the Impact of Fair Best Response Dynamics

    Get PDF
    In this work we completely characterize how the frequency with which each player participates in the game dynamics affects the possibility of reaching efficient states, i.e., states with an approximation ratio within a constant factor from the price of anarchy, within a polynomially bounded number of best responses. We focus on the well known class of congestion games and we show that, if each player is allowed to play at least once and at most β\beta times any TT best responses, states with approximation ratio O(β)O(\beta) times the price of anarchy are reached after TloglognT \lceil \log \log n \rceil best responses, and that such a bound is essentially tight also after exponentially many ones. One important consequence of our result is that the fairness among players is a necessary and sufficient condition for guaranteeing a fast convergence to efficient states. This answers the important question of the maximum order of β\beta needed to fast obtain efficient states, left open by [9,10] and [3], in which fast convergence for constant β\beta and very slow convergence for β=O(n)\beta=O(n) have been shown, respectively. Finally, we show that the structure of the game implicitly affects its performances. In particular, we show that in the symmetric setting, in which all players share the same set of strategies, the game always converges to an efficient state after a polynomial number of best responses, regardless of the frequency each player moves with

    Truthful Multi-unit Procurements with Budgets

    Full text link
    We study procurement games where each seller supplies multiple units of his item, with a cost per unit known only to him. The buyer can purchase any number of units from each seller, values different combinations of the items differently, and has a budget for his total payment. For a special class of procurement games, the {\em bounded knapsack} problem, we show that no universally truthful budget-feasible mechanism can approximate the optimal value of the buyer within lnn\ln n, where nn is the total number of units of all items available. We then construct a polynomial-time mechanism that gives a 4(1+lnn)4(1+\ln n)-approximation for procurement games with {\em concave additive valuations}, which include bounded knapsack as a special case. Our mechanism is thus optimal up to a constant factor. Moreover, for the bounded knapsack problem, given the well-known FPTAS, our results imply there is a provable gap between the optimization domain and the mechanism design domain. Finally, for procurement games with {\em sub-additive valuations}, we construct a universally truthful budget-feasible mechanism that gives an O(log2nloglogn)O(\frac{\log^2 n}{\log \log n})-approximation in polynomial time with a demand oracle.Comment: To appear at WINE 201

    The Price of Anarchy for Selfish Ring Routing is Two

    Full text link
    We analyze the network congestion game with atomic players, asymmetric strategies, and the maximum latency among all players as social cost. This important social cost function is much less understood than the average latency. We show that the price of anarchy is at most two, when the network is a ring and the link latencies are linear. Our bound is tight. This is the first sharp bound for the maximum latency objective.Comment: Full version of WINE 2012 paper, 24 page

    A New Lower Bound for Deterministic Truthful Scheduling

    Full text link
    We study the problem of truthfully scheduling mm tasks to nn selfish unrelated machines, under the objective of makespan minimization, as was introduced in the seminal work of Nisan and Ronen [STOC'99]. Closing the current gap of [2.618,n][2.618,n] on the approximation ratio of deterministic truthful mechanisms is a notorious open problem in the field of algorithmic mechanism design. We provide the first such improvement in more than a decade, since the lower bounds of 2.4142.414 (for n=3n=3) and 2.6182.618 (for nn\to\infty) by Christodoulou et al. [SODA'07] and Koutsoupias and Vidali [MFCS'07], respectively. More specifically, we show that the currently best lower bound of 2.6182.618 can be achieved even for just n=4n=4 machines; for n=5n=5 we already get the first improvement, namely 2.7112.711; and allowing the number of machines to grow arbitrarily large we can get a lower bound of 2.7552.755.Comment: 15 page

    Path deviations outperform approximate stability in heterogeneous congestion games

    Get PDF
    We consider non-atomic network congestion games with heterogeneous players where the latencies of the paths are subject to some bounded deviations. This model encompasses several well-studied extensions of the classical Wardrop model which incorporate, for example, risk-aversion, altruism or travel time delays. Our main goal is to analyze the worst-case deterioration in social cost of a perturbed Nash flow (i.e., for the perturbed latencies) with respect to an original Nash flow. We show that for homogeneous players perturbed Nash flows coincide with approximate Nash flows and derive tight bounds on their inefficiency. In contrast, we show that for heterogeneous populations this equivalence does not hold. We derive tight bounds on the inefficiency of both perturbed and approximate Nash flows for arbitrary player sensitivity distributions. Intuitively, our results suggest that the negative impact of path deviations (e.g., caused by risk-averse behavior or latency perturbations) is less severe than approximate stability (e.g., caused by limited responsiveness or bounded rationality). We also obtain a tight bound on the inefficiency of perturbed Nash flows for matroid congestion games and homogeneous populations if the path deviations can be decomposed into edge deviations. In particular, this provides a tight bound on the Price of Risk-Aversion for matroid congestion games
    corecore