8 research outputs found

    Strain effect on the heterogeneity of individual-cell growth kinetics of Salmonella Typhimurium

    Get PDF
    The present study showed that the variability of individual-cell growth kinetics may differ among strains of S. Typhimurium. The results provide useful quantitative information for incorporating strain variability and heterogeneity in individual-cell behavior in stochastic growth models and risk assessment studies

    Climate change threatens the microbiological stability of non-refrigerated foods

    No full text
    Most studies on the impact of climate change on foods focus on the consequences to security and safety. In the present study we provide scientific evidence on an overlooked aspect of climate change related to the microbiological stability of foods. Most microbiologically stable processed foods are contaminated with spores of thermophilic spoilage bacteria which are highly heat-resistant and can survive thermal processing. Current temperatures during distribution and storage in temperate climates do not allow growth of thermophilic bacteria to levels that can cause spoilage, ensuring their microbiological stability. Our findings suggest that the latter limiting condition can be eliminated by global warming. By assessing different global warming scenarios for 38 European cities in a case study with canned milk, we show that failing to limit the increase of global mean surface temperature below 2 °C can lead to a very high risk of spoilage and subsequently cause a collapse of the shelf-stable food chain. © 2022 Elsevier Lt

    Image analysis driven single-cell analytics for systems microbiology

    No full text
    Background: Time-lapse microscopy is an essential tool for capturing and correlating bacterial morphology and gene expression dynamics at single-cell resolution. However state-of-the-art computational methods are limited in terms of the complexity of cell movies that they can analyze and lack of automation. The proposed Bacterial image analysis driven Single Cell Analytics (BaSCA) computational pipeline addresses these limitations thus enabling high throughput systems microbiology. Results: BaSCA can segment and track multiple bacterial colonies and single-cells, as they grow and divide over time (cell segmentation and lineage tree construction) to give rise to dense communities with thousands of interacting cells in the field of view. It combines advanced image processing and machine learning methods to deliver very accurate bacterial cell segmentation and tracking (F-measure over 95%) even when processing images of imperfect quality with several overcrowded colonies in the field of view. In addition, BaSCA extracts on the fly a plethora of single-cell properties, which get organized into a database summarizing the analysis of the cell movie. We present alternative ways to analyze and visually explore the spatiotemporal evolution of single-cell properties in order to understand trends and epigenetic effects across cell generations. The robustness of BaSCA is demonstrated across different imaging modalities and microscopy types. Conclusions: BaSCA can be used to analyze accurately and efficiently cell movies both at a high resolution (single-cell level) and at a large scale (communities with many dense colonies) as needed to shed light on e.g. how bacterial community effects and epigenetic information transfer play a role on important phenomena for human health, such as biofilm formation, persisters' emergence etc. Moreover, it enables studying the role of single-cell stochasticity without losing sight of community effects that may drive it. © 2017 The Author(s)

    Ranking the microbiological safety of foods: A new tool and its application to composite products

    No full text
    A methodology based on the combination of two complementary approaches to rank microbiological risks in foods is presented. In the forward approach data on the pathogenicity of hazards and their behaviour in food during processing and following steps, up to consumption, are used in decision trees to qualitatively estimate the risk associated with foods. In the backward approach risks are evaluated based on the analysis of data available on the past occurrence of hazards and foodborne outbreaks. The categorisation of foods using the forward approach should prevail, and whenever it leads to a likely risk for a given food, the risk can be further qualified with the results from the backward approach. The methodology developed was applied to rank the public health risk posed by certain composite products, which contain both processed products of animal origin and products of plant origin (e.g., bread, cakes, chocolate). Despite limitations in the data available for these foods, valuable results were obtained. The method is therefore considered suitable for application with success to other types of food, and is proposed as a tool for risk managers to rank foods based on their potential food safety risk
    corecore