62 research outputs found

    Handover and Channel Allocation Mechanisms in Mobile Satellite Networks

    Get PDF
    In this work we study first handover prediction in non-geostationary mobile satellite networks. The ultimate choice of the transition path depends on UT position and signal strength. We investigate the procedure of beam monitoring and propose UT maximum residence as the criterion for path selection. The UT must operate both in full- and half-duplex mode, the latter being desirable when power limitations are imposed. We propose a scheme that achieves this goal and guarantees efficient diversity provision. Constant delay contours on the earth's surface are defined. The problem of reliable time delay acquisition is addressed, in case synchronization is lost. The SBS solves that either by using the known estimate of UT position or by requesting a measurement report by the UT. The problem of channel allocation appears in cellular networks of every kind. Calls arising in the cell overlap area have access to channels of more than one base station and may choose which base station they will use to establish connection. In that case the problems of base station and channel assignment arise jointly. We address the problem in a linear cellular network and aim at the minimumnumber of utilized channels. We present two algorithms: The first one expands Load Balancing in clique populations and is Sequential Clique Load Balancing (SCLB). The second one is named Clique Load Balancing with Inverse Water-Filling (CLB-IWF). In a dynamic environment, we unify SCLB and CLB-IWF into CLB-DA, which comprises Dynamic Allocation. CLB-DA is compared with Least Loaded Routing (LLR) policy and with Random Routing policy. We finally deduce that at light loads CLB-DA outperforms LLR, attaining smaller blocking probability, whereas at heavier loads all three policies converge

    Resource allocation issues in broadband wireless networks with OFDM signaling

    Get PDF
    Wireless broadband technologies are anticipated to flourish in thenext few years, due to the increasing demand for wireless connectivityand the need to support enhanced services and applications in local-or wide-area environments. The primary goal in a communications systemis Quality of service (QoS) provisioning to users, which depends onprocedures that span several communication layers. Although independentconsideration of different layers simplifies system design, it oftenturns out to be insufficient for wireless networks. Cochannelinterference between users that reuse the limited spectrum and theresulting impact of local adaptation actions on overall network performance impose layer interactions in wireless systems. The purposeof this work is to identify and study some of the issues that arisefrom the synergy between the physical and the MAC layer in the contextof multiple access schemes with orthogonal channels. Using the essential feature of channel orthogonality as a baseline,our approach places emphasis on Orthogonal Frequency Division Multiplexing(OFDM), which is an emerging multiple access and signaling method for futurewireless broadband networks. In OFDM, the broadband spectrum isdivided into orthogonal, narrow-band subcarriers and user symbols aresplit into subsymbols, which are transmitted in parallel over thosevariable-quality subcarriers. OFDM transmission reduces the effectivesymbol transmission rate, simplifies equalization at the receiver andprovides high immunity to inter-symbol interference and delay spread.Furthermore, it defines a framework for flexible adaptation to varyingchannel conditions, by allowing transmission parameter control foreach subcarrier. We first address the joint problem of channel allocation withsimultaneous adaptation of modulation level and transmission power ina multi-cell OFDM network. We study the impact of those parameters oncochannel interference and channel reuse and present two classes ofcentralized heuristic algorithms to perform the allocation. Next, we focus on a single-cell multi-user system with modulationcontrol and study the problem of subcarrier assignment to userssubject to time resource constraints. We study and compare integral andfractional user assignment, whereby a user is assigned to one subcarrieror can be partially assigned to multiple subcarriers. In addition, weconsider the synergy between link-layer ARQ protocols and physicallayer parameter adaptation. We consider a simple channel monitoringmethod which is based on counting received ACKs and NACKs. For asingle subcarrier, we show that the adaptation policy which maximizeslong-term average throughput per unit time is of threshold type. Wealso expand our policy to the multiple-subcarrier case with similar ordifferent channel qualities.In the sequel, we study the impact of smart antennas and SpaceDivision Multiple Access (SDMA) on MAC layer channel allocation for a single-cell multi-user system. Our approach encompasses multipleaccess schemes with orthogonal channels, such as OFDM. We first considerthe case of unlimited transceiver resources, where a separate beam canbe formed for each user of a spatially separable cochannel user set ina subcarrier. We present heuristic algorithms to allocate subcarriersto users and adjust down-link beam patterns, transmission powers andrates with the objective to increase total achievable system rate andprovide QoS to users in the form of minimum rate guarantees. Then, we consider the allocation problem forlimited transceiver resources, which arises whenever certainreasons impose limitations on the number of beams that can beformed. We propose meaningful heuristic algorithms to jointly formbeams from corresponding transceivers and assign subcarriers andtransceivers to users, such that the total achievable system rate isincreased

    Incentive Mechanisms for Hierarchical Spectrum Markets

    Full text link
    In this paper, we study spectrum allocation mechanisms in hierarchical multi-layer markets which are expected to proliferate in the near future based on the current spectrum policy reform proposals. We consider a setting where a state agency sells spectrum channels to Primary Operators (POs) who subsequently resell them to Secondary Operators (SOs) through auctions. We show that these hierarchical markets do not result in a socially efficient spectrum allocation which is aimed by the agency, due to lack of coordination among the entities in different layers and the inherently selfish revenue-maximizing strategy of POs. In order to reconcile these opposing objectives, we propose an incentive mechanism which aligns the strategy and the actions of the POs with the objective of the agency, and thus leads to system performance improvement in terms of social welfare. This pricing-based scheme constitutes a method for hierarchical market regulation. A basic component of the proposed incentive mechanism is a novel auction scheme which enables POs to allocate their spectrum by balancing their derived revenue and the welfare of the SOs.Comment: 9 page

    Distributed Storage Control Algorithms for Dynamic Networks

    Get PDF
    Recent technological advances have rendered storage a readily available resource, yet there exist few examples that use it for enhancing network performance. We revisit in-network storage and we evaluate its usage as an additional degree of freedom in network optimization. We consider the network design problem of maximizing the volume of end-to-end transferred data and we derive storage allocation (placement) solutions. We show that different storage placements have different impact on the performance of the network and we introduce a systematic methodology for the derivation of the optimal one. Accordingly, we provide a framework for the joint optimization of routing and storage control (usage) in dynamic networks for the case of a single commodity transfer. The derived policies are based on time-expanded graphs and ensure maximum performance improvement with minimum possible storage usage. We also study the respective multiple commodity problem, where the network link capacities and node storage resources are shared by the different commodities. A key advantage of our methodology is that it employs algorithms that are applicable to both centralized as well as to distributed execution in an asynchronous fashion, and thus, no tight synchronization is required among the various involved storage and routing devices in an operational network. We also present an extensive performance evaluation study using the backbone topology and actual traffic traces from a large European Internet Service Provider, and a number of synthetic network topologies. Our results show that indeed our approach offers significant improvements in terms of delivery time and transferred traffic volume.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNetEC/FP7/628441/EU/Improving Performance and Cost of Content Delivery in a Hyperconnected World/CDN-

    A Unified Framework for Handover Prediction and Resource Allocation in Non-Geostationary Mobile Satellite Networks

    Get PDF
    Efficient satellite resource management and allocation techniques aim at providing reliable real-time service, taking into consideration the scarcity of resources and the large number of handovers. This paper presents algorithms and modules for accurate satellite and beam handover prediction at the SBS. The call is assigned to that path which provides the highest preference factor. Several alternative solutions for path selection are proposed and evaluated in terms of time consumption and computational intensity

    Efficient Resource Utilization through Carrier Grouping for Half-duplex communication in GSM-based MEO Mobile Satellite networks

    Get PDF
    In the near future, existing terrestrial radio networks are envisioned to integrate with satellite systems to provide global coverage. In order to enable communication for both non-hand-held and hand-held User Terminals (UTs), the radio link design must allow the UT to operate in full- and half-duplex mode respectively, where the latter is desirable when radiation power restrictions are imposed. In addition, sophisticated resource management and diversity provisioning will enhance system capacity and reliability. However, propagation delay caused by the satellite link may lead to inefficient resource allocation and problematic diversity provisioning. In this paper, we address and study the resource allocation problem pertaining to a Medium-Earth-Orbit (MEO) satellite system with half-duplex communication capabilities. Such a system is characterized by large propagation delays, large intra-beam delay variations and inherently poor resource utilization. We propose a channel classification scheme, where the available carriers are partitioned into classes and each class is associated with a certain range of propagation delays to the satellite. The suggested infrastructure results in higher channel utilization, reduced call blocking rate and efficient diversity provisioning and can be implemented with low signaling load
    • …
    corecore