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Abstract— Efficient satellite resource management and allo-
cation techniques aim at providing reliable real-time service,
taking into consideration the scarcity of resources and the
large number of handovers. This paper presents algorithms
and modules for accurate satellite and beam handover pre-
diction at the SBS. The call is assigned to that path which
provides the highest preference factor. Several alternative so-
lutions for path selection are proposed and evaluated in terms
of time consumption and computational intensity.
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I. INTRODUCTION

Existing terrestrial radio networks provide mobile commu-
nications services within limited regions. In order to extend
the availability of these services and finally provide global
coverage, several satellite systems have been proposed as a
supplement to these networks. To provide service to small
mobile or hand-held terminals with large enough elevation
angle, MEO and LEO non-geostationary satellites are an ap-
pealing solution. Subject to such orbits, the satellite moves
continuously relative to the earth and permanent global cov-
erage entails the use of several satellites per orbit plane and
several orbit planes per constellation. The traffic generated
by a User Terminal (UT) is supported by satellites succes-
sively passing over the service zone and must be handed over
from one satellite to the next. Moreover, diversity attribute
is provided as a means of mitigating unpredictable call block-
age [2].

Several scenarios for efficient handover and resource allo-
cation have prevailed in literature. In the context of satellite
handover, two strategies have been proposed [3]: Maximizing
the instantaneous elevation angle or minimizing the handover
rate for a user. In the former case, that satellite providing
the highest elevation angle is selected, whereas in the latter
case a satellite is chosen provided for as long as it remains
visible.

The standard procedure of beam signal level monitoring,
applied in cell reselection schemes in GSM terrestrial cellular
networks is analyzed in [4] in the context of a satellite system.
The proposed scheme may be integrated or optimized with a
positioning system (e.g GPS), but it can also work without
that. In [5] a combined handover algorithm is proposed,
where transition decisions are dependent upon UT position
and signal strength measurements.

One of the major problems in wireless networks is the large
amount of exchanged signalling information. Due to reduc-
tion of the beams’ size in non-GEO satellite systems, the
number of handovers tends to increase. In order to save
valuable satellite resources, signalling information must be
kept to a minimum. In that aspect, seamless handover is
a smart approach for TDMA-based systems, since it does
not interrupt the call and requires minimum signalling ex-
changes [6]. A Satellite Base Station (SBS) which is served
by a satellite cell « initiates a handover procedure towards a
new satellite cell b when it perceives that the received power
level for cell « is below a certain threshold. Thus, it switches
its transmitter to the new carrier (while still receiving from
the old cell «, until the network becomes aware of the han-
dover) and provides resources for routing the forward traffic
via the new cell b. Efficient handover is also directly related
to Dynamic Channel Allocation techniques [7].

We investigate the problem of seamless handover from a
“macroscopic” point of view. In section IT we build the basic
setup and mention preliminaries of a mobile satellite system
and in section III we analyze the Path Selection algorithm.
Section IV provides an insight into satellite and beam han-
dover and turns attention in the maximum beam residence
criterion, while section V focuses on evaluation of the beam
monitoring procedure. In section VI numerical results are
illustrated and conclusions follow.

II. PRELIMINARY STRUCTURES AND PRINCIPLES

The satellite component of a mobile satellite system es-
sentially consists of r SBSs, n satellites with m beams per
satellite footprint and a traffic distribution assignment ac-
cording to a population of mobiles.

A. Geographical coordinate systems

To record the position of a satellite, SBS or UT, the fol-
lowing coordinate systems are considered:
1. ECI (Earth Centered Inertial) System : This system is
based at the earth center. The x-axis is fixed towards vernal
equinox and the z-axis is the polar axis.
2. ECEF (Earth Centered Earth Fixed) system : This sys-
tem is based at the earth center and rotates with it. The
positive x-axis points towards the intersection of the prime
meridian and the equator (0° longitude and latitude) and the



z-axis is the polar axis [1].

3. OF (Orbit Frame): Our innovation comprises this
satellite-based system. Its x-axis points in the direction of
the satellite, the positive z-axis points towards earth center
and y-axis completes a right-handed triplet. This system
provides a simple pictorial representation of the beam pat-
tern, overcoming complicated patterns on the curved earth
surface and is used in beam handover prediction. A point on
the earth surface is mapped onto a two dimensional system
(the z-dimension gets eliminated), so that residence within
a satellite footprint s; and a specific beam b; can be eas-
ily detected. The transformation matrix from ECEF to OF
system is provided in Appendix A.

B. Channel configuration

Broadcast Common Channels (BCCH) are shared between
a number of users in a cell, whereas Traffic Channels (TCH)
are Dedicated Channels and carry information for one user.
A TCH frame comprises Ny = 6 timeslots and a BCCH frame
consists of N, = 25 timeslots, all of duration 6.66msec each.

ITII. BASIC ALGORITHMS EXECUTED AT THE SBS
A. Algorithm A: Beam selection for power measurements

In order to ensure the most appropriate cell selection at
a transition, each UT continuously monitors the received
BCCH signal of a proper set of adjacent satellite cells. The
SBS periodically commands the UT to measure the BCCH
signal strength of all visible serving and non-serving satellites
and creates a list of the beams that will provide measure-
ments and will serve as a confirmation to handover decisions.
The list comprises a set C of beams currently covering the
UT position and belonging to visible satellites from both the
UT and the SBS, and a set A of approaching beams of serv-
ing satellites. The above sets of beams are candidates for a
satellite and a beam handover respectively. Upon reception
of this list via an uplink Common Control Channel (CCH),
the UT performs measurements for each of these beams and
sends the enhanced list back to the SBS on the downlink
CCH. This procedure takes place both during signalling and
traffic phase of a call and is depicted in firure 1.

B. Algorithm B: Path Selection

Path Selection algorithm provides input to Resource Allo-
cation and takes place after Algorithm A and before a han-
dover of any type or a non-diversity to diversity transition
attempt. Each entry e; of the list is initially a pair of satellite
and beam indices (s;,b;). The list is modified as follows:

1. All possible combinations (e;,e;) of single elements are
created and appended to the list.

2. Entries with a power measurement below a given thresh-
old are eliminated, as indicating unreliable connection.

3. Double entries including an overloaded satellite are elim-
inated, as not eligible for diversity.

4. The list is ranked according to a predefined preference
factor. Finally the first node of the list will have the highest
preference factor.
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Fig. 1. Schematic representation of Path Selection procedure.

Each entry of the list represents a single or a diversity path,
eligible for resource allocation. For each entry k the Prefer-
ence Factor Py is a function of the satellite elevation angle
0, the signal level I and the azimuth separation angle ¢, in
case the node denotes a diversity path. Thus

0 0
P — Ax (£+ﬁ+m>+gxgm+1k,g) (1)
s ™ 2r

In the above equation, Ij is a parameter illustrating the dif-
ference of the received signal level from the threshold value.
The received signal strength is computed with a simplistic
channel propagation model that takes into consideration UT
position in a beam, multipath fading loss, shadowing loss
and free space loss. A big azimuth angle provides a prefer-
able path, since there are fewer chances that both paths will
be corrupted due to an unpredictable blockage.

IV. CRITERIA FOR SATELLITE AND BEAM HANDOVER
A. Beam Handover

UT position is mapped to OF through a matrix, whose ele-
ments depend on current satellite position and velocity. This
ephemeris data is used to determine future satellite locations,
so that future positions of the UT in the OF are known. A
binary search method of successive mappings of UT position
to the OF determines the time to handover to virtually any
desired accuracy (other errors notwithstanding).

When a UT enters a beam, it is mapped to the OF sev-
eral times until a time interval of acceptable length (e.g. 1
minute) is found, where the UT resides in the current beam
at the beginning of the interval and lies in a different beam
at the end of the interval (Figure 2). Handover must occur
sometime during this interval and predicted handover time
is the midpoint of the interval. If the acceptable time in-
accuracy is 1 minute, the handover prediction algorithm is
accurate within 30 seconds. Equivalently, the contribution to
the error in handover prediction is at most 30 seconds in this
case. In reality several other factors contribute to prediction
error, such as ephemeris data and UT position inaccuracy
and UT mobility.

Assuming an initial horizon window length of Wy minutes
and an acceptable time prediction error of ¢ seconds, the
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Fig. 2. Demonstration of beam handover from the beam located in the
satellite nadir (C) to a neighboring beam (F).

number of OF mappings before convergence is at most:
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B. Satellite Handover

For the satellite handover we have the procedure:
o Obtain the serving satellite(s) at current time ¢..
o Update those to a future time ¢y, using the satellite
ephemeris data.
o If Oyr(ty) <10° or Osan(ty) < 10°, then conclude that a
satellite handover has occurred at some time t* € (tc, t ).
o Apply bisection idea on that interval.
» Stop after n* iterations when ¢y p« — e < W.
e The predicted satellite handover time is thus

_ tf,n* +tc,n*

ts 5

(3)

C. Mazimum beam duration criterion for beam handover

Motivated by the fact that additional handover occurances
contribute to excess signalling load and significant transmis-
sion delays in the system, we propose a new criterion for
handover event triggering. The basic characteristic is the
minimization of satellite and beam handover rates, since the
residence time in a cell is forced to be the maximum possible.
Upon creation of the list with the candidate paths for tran-
sition, no preference factor computation is required. Simply
the node containing the beam in which the mobile is pre-
dicted to stay the longest is selected as the transition beam.
This beam may belong to the current serving satellite or not,
providing thus the definition of beam handover or satellite
handover after adopting this criterion.

This criterion is computationally less intensive than Path
Selection. UT residence time for each beam in the list is
computed by standard mappings in the OF satellite coordi-
nate system and no elevation angle computation is required.
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More importantly, no power measurement information ex-
change between the UT and the SBS is necessary in order to
confirm handover decisions.

V. EsTIMATION OF BCCH MEASUREMENT RECEPTION
TIME

Given the UT and satellite positions, the required time for
the execution of Path Selection and essentially the Resource
Allocation algorithm, depends on the size of the created list
at the SBS. A worst case scenario would be a UT with di-
versity connection in view of four satellites, where the max-
imum number of measured beams is 10. During signalling
mode, it is highly recommended to minimize this time, so
that transition to traffic mode occurs fast. The alternative
method of measuring only one beam for each visible satellite
has the obvious advantage of requiring less time to accom-
plish. The SBS receives the list and proceeds in allocating
resources to the call, so that it enters traffic mode. In traffic
mode however, this alternative method may result in a sub-
optimal path. Therefore, this method can be applied during
signalling mode, where a fast switch to an initial path is
required.

A. Assumptions

In a realistic environment, a dynamic BCCH Frequency
Allocation Plan is employed for each beam, where the as-
signed BCCH frequency and timeslot is subject to changes.
A relatively simplistic fixed allocation has been applied here,
in which the BCCH timeslot for a beam is BOCH =
b; modNy, where b; is the beam index.

Without loss of generality, we assume a Random TCH
timeslot allocation. A UT which is assigned to traffic slot «
receives and transmits traffic during timeslots z,x 4+ 1 and
x+2, which form the reference window x. For a non-diversity
situation, the windows where the UT receives and transmits
traffic are

Wi =x+mNg, m=1,2,... (4)

The list is tranferred to the UT via the CCH channel in
one message, which is equivalent to p = 12 bursts of 40msec
each and its transmission time is considered to be practically
independent of the list size. A BCCH burst is considered to
be eligible for measurement if and only if it is received by
the UT for one timeslot duration in a free reference window.

B. BCCH measurement procedure and list recovery

Suppose the list leaves the SBS at time ¢ = 0. The time
when the UT receives the complete list depends on the rela-
tive positions of the SBS, the satellite and the UT and can
be approximated as

Trur =dss +de—s + Tp +12 x 0.04 (sec) (5)

where dgg is the delay from the SBS to the satellite, d._s is
the C-band to S-band frequency conversion delay, and T}, is
the propagation delay from the satellite to the UT.

The UT intends to perform measurements of the BCCH
bursts for beams in the list. BCCH bursts leave the satellite



in series at the beginning of a reference interval with a period
of N, timeslots. The beginning of the n-th BCCH burst
arrives at the UT at times

tn = [No(n — 1)+ BOCH — 1] x T+ T, (6)

and is subject to measurement only after the measurement
of the previous burst has been accomplished.

If & is the time instant when the beginning of the n-th
series burst of the k-th element in the list is received by the
UT then the above condition can be expressed as

k-1

tZ > Tr,UT + Z Xy (7)
£=0

where X, is the required time to measure the burst of the
¢-th element in the list. Assume that n = nj is the mini-
mum integer for which condition (7) holds. From that point,
BCCH bursts will arrive sequentially, until the existence of
an open reference window (three empty consecutive slots)
is detected. The r-th order BCCH of the nj, BCCH series
arrives at the UT at times
e = tpe + (r = 1)Ny (8)
and last for one timeslot. Assume r = r} is the minimum
burst order until an unoccupied reference window is found,
i.e
Trlf;;r;:#x""pN% p:mam+17m+2 (9)

Measurements are performed instantaneously. The transfer
time of the list with the measurements back to the SBS is

Tsur =Tp 4+ ds—c +dss +12 x 0.04 (sec) (10)

As a consequence, the total time needed for the SBS to re-
cover the list of measurements, will be

Tiotar = Trur + Ts,ur + Z Xk (11)

ke list
. . k
where X}, is essentially Tns o

VI. SIMULATION AND RESULTS

A realistic satellite system environment has been built and
a representative traffic distribution has been adopted. Spe-
cific terrestrial areas expose greater traffic density, whereas
others (e.g. the poles, or areas covered by sea) are character-
ized by negligible traffic. The earth surface is projected onto
a two dimensional plane and is divided into 288 15° x 15°
squares, covering a surface from —180° to 180° longitude
and 90° to —90° latitude. Calls are assumed to arrive in in-
dependent Poisson streams while call hold times follow the
exponential distribution with mean 150sec.

Depending on geographical location, the average elevation
angle varies between 30° and 48° and the azimuth separation
angle varies between 65° and 135°. In the simulation the
contribution of those parameters and power measurements
is taken into consideration, i.e A = B =1 in equation 1.
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Regarding diversity path allocations, it was observed that
a transition for one of the two paths occurs for at least 88%
of the cases. The transition of both diversity paths depended
on the the proximity of the diversity monitoring time point
and the handover time instant and occurred for 2 — 12% of
the cases.

In figures 3 and 4 we present comparative results about
satellite and beam handover rates under the UT Position
and the Maximum Beam Residence criteria in a region with
moderate load (0.92 calls per second). By using the latter
criterion, a reduction to beam handover rate up to 85 — 90%
was observed in steady state, while for heavier traffic load
this reduction reached 35% — 40%. A small drawback is
the increased satellite handover rate for some time periods.
Taking into consideration the low satellite handover rate (3—
4 handovers per minute in steady state), this fact should not
receive further attention. At any rate, under heavy traffic,
the satellite handover rate is reduced by more than 50% as
well.

Finally, results about the estimated time for Path Selec-
tion Algorithm execution were obtained by performing the
experiment for an SBS. We notice that the involved aver-
age elapsed times are virtually independent of the location
of the SBS. For each of the squares s;; of the geographic
configuration, we define an average time 7Tj;, a minimum
time m;;, & maximum time M;; and a time variance Vary ;;.
Over the entire earth, we define the average T', average min-
imum m, average maximum M, the average variance Vary
and the absolute minimum and maximum measurement re-
covery times. We also define the absolute minimum m, and
absolute maximum M, times. Results are summarized in
table I. The measurement method using only one beam per
satellite reduces the measurement recovery time by 60% on
the average. Average minimum and maximum times and the
variance of the elapsed time reduce accordingly. Taking into
account the specifications about the maximum waiting time
tolerance during call set up, the percentage of cases when
only one beam per satellite is used can be derived.

VII. CONCLUSION

A unified simulation framework for a high-level study of
handover and resource allocation has been presented and
some alternatives of transition path selection have been pro-
posed and evaluated in terms of handover rate and time con-
sumption. Further study should focus on viewing the system
from the aspect of channel allocation.

VIII. APPENDIX A

TRANSFORMATION MATRIX BETWEEN ECEF AND OF
COORDINATE SYSTEMS
The transformation matrix is a 3 x 3 matrix that relates
the ECEF an d OF coordinate systems and is obtained as
follows:
1. Get the satellite position and velocity vectors in the ECEF
coordinate system, P(t) and V(t) and the corresponding
magnitudes |P(t)| = Rg + h and |V (t)| = 2n(Rg + h)/T.
2. Evaluate the vector §(t) = —P(t) x V(1).



3. Get the third row of the transformation matrix as:

B(t
T3 = — _.( ) (12)
|P(t)]
4. Get the second row of the transformation matrix as
L A1)
2 — 15 (13)
17 ()]
5. Get the first row of the transformation matrix as
=Ty XT3 (14)

IX. APPENDIX B

COMPUTATION OF AZIMUTH SEPARATION ANGLE
The azimuth separation angle is the angle on the earth sur-
face between arc Ly connecting UT position and subsatellite
point Sy of first satellite and arc Lo connecting UT position
and subsatellite point Ss of second satellite.

The function D(-,-) computes the distance of two points
Py, P, with given longitudes and latitudes Pj(¢1,60;) and
Ps(¢2,02) on the earth as

sin oy

D(P;, Py) = 2tan™" ( n = “2> (15)

Sin 2
where

cos((a1 — a2)/2) 1
cos((a1 + a2)/2) x tan(a12/2)> (16)

sin((a1 — a2)/2) 1
sin((a1 + az)/2) tan(a12/2)) (7
and a; = 7/2 — 61, ag = 7/2 — 0,

a :{ P1 — P2
- 2w — (¢1 — ¢2)

o, = arctan (

oy = arctan (

if¢1—¢2<7’(’

otherwise (18)

The azimuth angle is calculated using spherical trigonometry

as

cos(D(S1,52)) — cos(D(S1,UT)) cos(D(S2,UT))
sin(D(S1,UT)) sin(D(S2,UT))

¢azim =

(19)

TABLE 1
STATISTICAL RESULTS OVER THE ENTIRE EARTH FOR THE MEASUREMENT
RECOVERY TIME FOR AN SBS.

| Quantity | Entire

list | One beam per sat

T 3.405 sec 2.063 sec
m 1.741 sec 1.258 sec
M 5.506 sec 3.167 sec
Var; 0.597 sec 0.159 sec
Me, 1.432 sec 1.135 sec
M, 7.283 sec 4.221 sec

Fig. 3.

Fig. 4.
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Comparison of satellite handover rate under UT position or
maximum beam residence time triggered handover event at a region
with 0.92 calls/sec.
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Comparison of beam handover rate under UT position or
maximum beam residence time triggered handover event at a region
with 0.92 calls/sec.
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