
This version is available at https://doi.org/10.14279/depositonce-9137

© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Iosifidis, G., Koutsopoulos, I., & Smaragdakis, G. (2017). Distributed Storage Control Algorithms for
Dynamic Networks. IEEE/ACM Transactions on Networking, 25(3), 1359–1372.
https://doi.org/10.1109/tnet.2016.2633370

George Iosifidis, Iordanis Koutsopoulos, Georgios Smaragdakis

Distributed Storage Control Algorithms for
Dynamic Network

Accepted manuscript (Postprint)Journal article |

Distributed Storage Control Algorithms for
Dynamic Networks

George Iosifidis, Iordanis Koutsopoulos, and Georgios Smaragdakis

Abstract—Recent technological advances have rendered stor-
age a readily available resource, yet there exist few examples that
use it for enhancing network performance. We revisit in-network
storage and we evaluate its usage as an additional degree of
freedom in network optimization. We consider the network design
problem of maximizing the volume of end-to-end transferred
data and we derive storage allocation (placement) solutions. We
show that different storage placements have different impact on
the performance of the network and we introduce a systematic
methodology for the derivation of the optimal one. Accordingly,
we provide a framework for the joint optimization of routing
and storage control (usage) in dynamic networks for the case
of a single commodity transfer. The derived policies are based
on time-expanded graphs and ensure maximum performance
improvement with minimum possible storage usage. We also
study the respective multiple commodity problem where the
network link capacities and node storage resources are shared by
the different commodities. A key advantage of our methodology is
that it employs algorithms that are applicable to both centralized
as well as to distributed execution in an asynchronous fashion,
thus, no tight synchronization is required among the various
involved storage and routing devices in an operational network.
We also present an extensive performance evaluation study using
the backbone topology and actual traffic traces from a large
European Internet Service Provider, and a number of synthetic
network topologies. Our results show that indeed our approach
offers significant improvements in terms of delivery time and
transferred traffic volume.

Index Terms—Network optimization, In-network Storage.

I. INTRODUCTION

A. Motivation

During the last few years we are witnessing an unprece-
dented growth in user demand for high speed communication
and ubiquitous network access. The population of users in-
creases continuously and novel devices and applications create
an ever growing volume of data traffic. In recent reports
released by Ericsson [1] and Cisco [2] it is forecasted that,
until 2018, mobile data traffic will increase up to 18 times
and IP traffic will quadruplicate. These developments pose
new challenges for communication networks that cannot be
addressed solely by the traditional network upgrading and
capacity over-provisioning methods.

Indeed, economics, especially cost reduction, is a main
driving force for revisiting the use of network resources. First,

G. Iosifidis is with the School of Computer Science and Statistics, Trinity
College Dublin, the University of Dublin, and CONNECT Centre, Ireland. I.
Koutsopoulos is with the Dep. of Informatics, Athens University of Economics
and Business, Greece. He acknowledges the support of ERC08-RECITAL
project, co-financed by Greece and the European Union (European Social
Fund) through the Operational Program “Education and Lifelong Learning”
- NSRF 2007-2013. G. Smaragdakis is with TU Berlin, MIT CSAIL, and
Akamai Technologies. He was supported by the EU Marie Curie IOF CDN-
H (PEOPLE-628441) and the ERC Starting Grant ResolutioNet (ERC-StG-
679158).

increasing the capacity of a network requires serious invest-
ment in usage rights and infrastructure. To exemplify, in 2010,
AT&T paid 1.93 billion dollars for buying additional spectrum
in order to serve the increasing traffic of its mobile users [3].
Even worse, such network upgrading methods are expected
to be out-paced by the continuously growing demand [2].
Second, the expenditures of transit and access ISPs increase
since the link capacity price decrease cannot compensate for
the increasing traffic. Third, cloud providers incur high leasing
cost for the transit bandwidth [4], especially in regions where
transit cost is still high, e.g., in Asia (where the traffic cost is
3 to 5 times more expensive compared to the US and Europe),
that is required for connecting their datacenters. Clearly, today
more than ever it is imperative to devise novel network design
and management methods and utilize network resources that
are hitherto unexploited.

A resource that is currently overlooked at network design
is node storage capacity. Recent technological advances have
rendered storage a cheap and readily available resource which
can be used at small portable devices, at base stations, and
at central nodes (e.g., routers) of wireline networks or dat-
acenters. Moreover, emerging virtualization techniques made
it possible to easily lease storage resources to third parties
[6]. However, in spite of the recent research interest for in-
network storage [5], and the related products that are now
commercially available (e.g., see [7], [8]) it is still considered
an auxiliary resource and remains in the background. In this
work, we consider storage as an additional degree of freedom
in network design and optimization.

We systematically study the benefits of in-network storage,
i.e., storage capacity of the network nodes. Our goal is
to identify the conditions under which storage can improve
network performance and also to quantify these benefits. We
use as performance metric the amount of data that can be
conveyed end-to-end over the network in a certain time interval
or, equivalently, the incurred delay for the transfer of a certain
amount of data. The main idea is to exploit the time diversity
in the available link capacity variation patterns. The presented
methodology can be easily extended to include other metrics
such as the energy consumption per unit of transferred data.
We study mechanisms for realizing these storage benefits by
employing algorithms that can be executed in a centralized
or distributed fashion. The latter is particularly useful for the
design of decentralized network mechanisms for large-scale
systems [11], [12].

Some specific instances where in-network storage can im-
prove the performance of a network are the following:

• Access ISPs which lease transit bandwidth from higher-
tier ISPs based on peak-traffic pricing schemes, i.e., 95%-
percentile pricing, can leverage in-network storage for the

cost-efficient transfer of data across distant geographic
areas. The rational is to temporarily store data at in-
termediate nodes along a path, as shown in Fig. 1(a)
and push it further only when the traffic is low so as
to exploit the unutilized already-paid-for bandwidth [13].
The same strategy can be employed by Tier-1 ISPs which
dimension their links based on peak traffic. Such methods
are increasingly important nowadays due to the advent
of network function virtualization (NFV) [9] that allows
relatively fast reconfigurations.

• Online service companies and cloud providers typically
operate a number of geographically dispersed datacen-
ters. Inter-datacenter traffic constitutes a large portion of
their traffic [14] and requires large capital for leasing
transit bandwidth [4]. In this case data can be stored at
intermediate nodes and routed whenever traffic load is
low, i.e., during off-peak hours [15], in order to exploit
left-over already-paid-for transit bandwidth [16], see Fig.
1(b). Thus, the cost of applications such as data back up
can be significantly reduced using in-network distributed
storage of third-parties (e.g., Tier-1 operators) [30].

• Mobile network operators can use in-network storage at
their core components or at their small base stations so
as to store popular content items which can be cached
there during off-peak traffic hours [17], Fig. 1(c). Such
architectures are already in place [18], have significant
performance/cost benefits [19], and a variety of different
applications. For example, delivery of software updates to
mobile phones can be benefited and alleviate bottlenecks
in the wireless backhaul [20].

• In delay tolerant networks storage is used whenever the
path towards the indented receiver is disrupted [21].
When the link capacity variations are known in advance,
proper store-and-forward policies can minimize the end-
to-end data transfer delay.

The above scenarios share some important characteristics.
First of all, the need for storage depends on conditions (related
to link available capacities) which may vary across the net-
work. Therefore, data should be stored locally and as close as
possible to the intended destination node. Moreover, the links
connecting the different nodes (e.g., the different datacenter
sites or ISP central nodes) have time-varying traffic loads. In
most cases, this is due to the fact that users demands and
traffic follows strong diurnal patterns [15], [22], [23]. On the
other hand, the link capacities are dimensioned based on peak
traffic. Therefore, these systems exhibit periodic variations of
the available link capacities that can be predicted in advance.

For these network instances, we are interested in addressing
the following questions to improve the network performance1 :
(i) How much storage should be allocated (added) in each
node? (ii) Given the storage allocation, in which node(s) and
for how long should data be stored?

B. Methodology and Contributions
We study flow-level storage control policies for dynamic

networks. We employ the technique of time-expanded graphs

1 Henceforth, we will use this term to describe the maximum amount of
data that can be transferred end-to-end by a network in a certain time period.

S

Router

Router

Router
Router

(a) ISP network with storage enhanced routers

S

SDatacenter

Datacenter

Datacenter

Datacenter

(b) Overlay of Datacenters

Internet
Evolved Packet

CoreCore

S
Storage

Base Station

(c) Cellular network with in-network storage

Fig. 1. Instances of in-network storage.

(TEG) [25] which map the time evolution of these networks
to ordinary static graphs. Storage is modeled by defining a
special type of storage link connecting different time instances
of the same node. The minimum cut (min-cut) of the expanded
graph represents the upper bound of the data amount that can
be transferred by the network within a given time period, and
can be increased under certain conditions by adding storage.

We are interested in identifying these conditions and devise
the optimal storage allocation (placement) policy. This is an
important design problem since different storage placements
have different impact on the end-to-end traffic. The optimal
allocation is the one that ensures the maximum possible
network performance improvement. We show that this storage
allocation depends both on the network topology and the
patterns of the available link capacity. To that end, we define
the storage control policy, which determines how much data
should be stored in each node.

Moreover, we suggest that storage control must be consid-
ered in conjunction with routing and derive the optimal Joint
Storage control and Routing (JSR) policy. This JSR policy
ensures the maximization of the transferred data within the
time period of interest, while using the minimum required
storage capacity. Such a scheme can be implemented with
an overlay mechanism that determines the routing and store
decisions in the network layer. Our methodology is inspired
by the Network Utility Maximization (NUM) framework [12],
[24], yet it significantly departs from previous works due to
the joint consideration of these different types of network
resources.

Additionally, we use the ε-relaxation algorithm to find the

optimal JSR policy which is amenable to distributed asyn-
chronous execution [26]. This approach allows us to design
decentralized mechanisms (when necessary) which enable the
network to adapt its JSR policy in a scalable way using
local information and minimum signaling among nodes [11].
Besides, such mechanisms alleviate the problem of single point
of failure and distribute evenly the computation load across all
nodes [12]. Accordingly, we extend our study for the case
different flows (commodities) traverse the network. In this
scenario, more often than not, the flows must share the link
capacity and intermediate node storage resources.

We evaluate the benefits of in-network storage addition
using a spectrum of different network architectures, including
the architecture of an actual (operational) large European ISP,
and respective real traffic traces. Moreover, we considered
different sets of link capacity variation patterns as well as
various time periods to evaluate the performance benefits of
our approach in a spectrum of settings. In summary, the main
contributions of this work are the following:

(i) We provide a methodology for identifying under which
conditions in-network storage can improve the data transfer
capability of a network with time-varying link capacities.

(ii) For linear (tandem) networks, we analytically quantify
the storage benefit as a function of the capacity patterns.

(iii) For general networks we provide a methodology, based
on Time-Expanded Graphs (TEG), for finding the storage
enhanced min-cut and the optimal storage allocation policy.
That is, we find the storage placement beyond which no further
improvement is possible in the amount of data transferred
within a time interval.

(iv) We introduce the Joint Storage control and Routing
(JSR) policy as the solution to a max-flow problem for a single
commodity. We explain that in order to maximize performance
benefits with the minimum storage capacity, storage usage
must be considered in conjunction with routing.

(v) The JSR policy is derived using the ε-relaxation al-
gorithm, which is amenable to distributed asynchronous ex-
ecution, and hence enables the derivation of decentralized
JSR mechanisms that are robust to signaling delays and other
similar network impairments. Our analysis extends the NUM
framework by proposing this joint optimization and employing
a hitherto overlooked algorithm.

(vi) We extend our work to the multicommodity scenario
where different commodities are transferred over the net-
work and study the respective max-flow multicommodity JSR
(MJSR) problem.

(vii) A detailed performance evaluation study using the
topology of a large European ISP, real traffic traces, and a
number of synthetic networks verifies our theoretical findings.

The rest of the paper is organized as follows. In Section II
we quantify the performance benefits of in-network storage for
linear networks. In Section III we introduce the optimal storage
allocation policy for general networks. In Section IV we study
joint storage control and routing (JSR) policies and present
an algorithm for their derivation. Accordingly, in Section V
the respective multicommodity problem is considered. Section
VI provides performance evaluation results, and Section VII
describes the related works. We conclude in Section VIII.

II. STORAGE CAPACITY ALLOCATION FOR LINEAR
NETWORKS

We begin our analysis by considering linear networks where
routing is fixed, from a node to its next one towards the
destination. In this case, storage benefit can be analytically
quantified for arbitrary link capacity variation patterns.

A. Motivating Example
Consider the three-node linear network depicted in Fig.

2 and assume time slotted operation with slot duration T0.
The link capacities, measured in packets/sec, change every
other slot t according to a periodic pattern, i.e., Cab(t) = D,
Cbc(t) = 1 and Cab(t+2) = 1, Cbc(t+2) = D, with D > 1. In
between the 2 slots the capacity of both links remain constant.
Transmission delay over each link is equal to the slot duration
T0. In this setting, we ask the question: How much time is
required to convey D data packets from node a to node c if
(i) the intermediate node b has no storage capacity, (ii) node
b has storage capacity of Sb > D packets?

The answer is straightforward, yet illuminating. In the first
case, node a can push in each time slot t only as much data
as node b is able to forward in the immediately next time
slot t + 1, i.e., Cbc(t + 1)T0. Hence, for the link capacity
variation above, the required time for data transfer is D + 1
slots. However, when Sb > D, node a pushes up to Cab(t)T0
data and the excess amount that cannot be immediately routed
to destination node c, i.e., (Cab(t)−Cbc(t+1))T0 is stored at
node b. In the subsequent slot t+2, when Cbc is high, stored
data along with the new arrived data from node a is delivered
to the sink. Therefore, in this case the required time for the
delivery of D packets is only 2 slots.

Clearly, the use of storage reduces significantly the incurred
end-to-end delay for the data transfer. From a different per-
spective, storage increases the maximum amount of data that
the network can deliver within a certain time interval. Notice
that in order to achieve the same performance without storage
use, we would have to increase the capacity of either one of the
two links up to D−1 units. Thus, node storage is actually used
as a special type of link capacity and augments the end-to-end
data transfer capability of the network. Finally, it is apparent
that the benefit from storage utilization depends on the relative
link capacity values. Namely, link capacities should vary with
time and, moreover, the capacity variation patterns of the links
should be different with each other.

B. Storage Benefits in Linear Networks
We now pose the following questions: (i) what is the

incurred delay Del to deliver an amount of D data packets
to the destination? and (ii) what is the amount B of data that
we can deliver from node a to node c in time period of T
time slots, if node b has storage capacity?

When node b has zero storage capacity, the network end-
to-end capacity, i.e., the rate at which data can be transferred
end-to-end at each slot t is:

Cac(t) = min{Cab(t), Cbc(t+ 1)} (1)

We denote with Cab = (Cab(t) : t = 1, 2, . . . , T) and Cbc =
(Cbc(t) : t = 1, 2, . . . , T) the capacity vectors of links (a, b)

a b c

Sb

Cab Cbc

Fig. 2. A 3-node tandem network, where a is the source node, c the sink
(destination), and Sb is the available storage at node b.

and (b, c) respectively for the time period T . In this case, the
incurred delay for the transfer of D units of data from node a
to node c is Del = MT0 seconds, where M is the minimum
integer for which it holds:

M∑
t=1

Cac(t)T0 ≥ D (2)

Also, the amount of data transferred in T time slots is:

B =

T−2∑
t=1

Cac(t)T0 (3)

Notice that, since we assumed that transfer delay is equal to
the slot duration T0, it takes two slots for each packet to reach
node c. Hence, data must depart from source node a before
slot T − 2 in order to reach the destination within the T slots.

When node b has storage capacity of Sb data packets, the
network end-to-end capacity, denoted Ĉac, changes and can be
significantly increased under certain conditions. Specifically,
Ĉac(t) is the minimum of the data that is available at node b
at slot t, and the capacity of the last hop link Cbc(t+ 1):

Ĉac(t) = min{Cab(t) + Zb(t), Cbc(t+ 1)} (4)

where Zb(t) is the accumulated data at node b.
Let us explain the intuition behind this expression. On the

one hand, the maximum possible amount of data that can be
delivered at node c at slot t + 2 is upper bounded by the
capacity of link (b, c) at t+1. On the other hand, if Cbc(t+1)
is very large, the data that can be delivered is upper bounded
by the data that is available at node b at the previous slot.
The latter consists of the data that has been transmitted from
node a in the exactly previous slot, which is upper bounded
by the instantaneous capacity Cab(t), and the amount of data
Zb(t) that has been accumulated until slot t at node b. This
quantity is always nonnegative and upper bounded by node b
storage capacity Sb. A recursive formula for its calculation is
the following:

Zb(t+1) = min{Sb, [
(
Cab(t)−Cbc(t+1)

)
T0+Zb(t)]

+} (5)

where Zb(0) = 0 and [·]+ is the projection onto the nonnega-
tive orthant. Therefore in this case the end-to-end capacity of
the three-nodes network is Ĉac(t) ≥ Cac(t), t = 1, . . . , T .

This means that the use of storage at intermediate node b
improves significantly both the delay and the amount of end-
to-end transferred data. The exact improvement that comes
with storage at node b depends on the relative variation pattern
of link capacities Cab and Cbc. The more diverse the capacity
value sequences are, the larger is the benefit from the storage
usage.

In order to quantify the variability in capacity patterns of
links (a, b) and (b, c) of graph G, for the time period T , we

10

20

1 2 3 4 5 6 7 8

10

20

1 2 3 4 5 6 7 8

t (s)

t

C (p/s)

Cab

Cbc

Cab

Cbc

I=0

I=30

Fig. 3. Dissimilarity Index I , for two different capacity variation patterns in
network of Fig. 2. Grey-colored areas correspond to data accumulation in Sb
while black-colored areas to data release from Sb.

define a metric that we name Dissimilarity Index I(G,T).
This metric, which is a function of the capacity variation
patterns, measures the aggregate amount of data2 that can
be temporarily stored in node b and subsequently delivered in
node c within the period T , assuming that there is no storage
capacity constraint. Specifically, parameter I(G,T) is defined
as follows:

I(G,T) =

T∑
t=1

min
{
Zb(t), [Cbc(t+ 1)− Cab(t)]

+
}

(6)

where Zb(t) is calculated from (5) for Sb = ∞. An example
for I(G,T) is depicted in Fig. 3.

The dissimilarity index reveals the conditions under which
storage is beneficial for every network G and time interval T .
Clearly, when I = 0, storage does not increase the amount
of end-to-end transferred data. This happens in the following
scenarios:
• No data is accumulated in node b. This is the case

when the capacities of the 2 links have equal values
in successive slots, Cab(t) = Cbc(t + 1), ∀ t, or when
link (a, b) has always lower capacity than link (b, c), i.e.,
Cab(t) < Cbc(t+ 1), ∀t. In this case there is no need to
utilize intermediate storage at node b since all data that
is transmitted from node a can be immediately (after 2
slots) delivered to the destination node c.

• Accumulated amount of data in node b cannot be de-
livered. Moreover, even if the link capacity variation
patterns are such that data is accumulated in node b, it
may be impossible to push it further if link (b, c) is always
the network bottleneck, i.e., Cbc(t+ 1) < Cab(t), ∀t.

In Table I we give a numerical example for the network
of Fig. 2 and demonstrate the performance benefit of storage
at node b. Capacities are measured in packets/sec (p/s) while
data and storage in packets (p).

Similar results hold for linear networks with more than three
nodes. For example, consider the four-node linear network
depicted in Fig. 4. Node d is the destination while nodes b

2 Clearly, the storage benefits can be calculated by using directly the
capacity variation patterns. However, this metric allows the systematic study
of the conditions that render storage beneficial.

TABLE I
EXAMPLE FOR NETWORK OF FIG. 2, T0 = 1, I = 24, Sb = 30

Slot Cab Cbc Cac D Zb Ĉac D̂

t (p/sec) (p/sec) (p/sec) (p) (p) (p/s) (p)

1 10 6 2 0 0 2 0
2 12 2 0 0 8 0 0
3 14 0 10 2 20 10 2
4 2 10 2 2 24 12 2
5 2 12 2 12 14 10 12
6 4 10 4 14 6 10 24
7 6 14 0 16 0 0 34
8 0 0 0 20 0 0 44

a b c

Sb

Cab Cbc d
Ccd

Sc

Fig. 4. A tandem (linear) network G of 4 nodes. Sb and Sc is the available
storage capacity at node b and c, respectively.

and c are assumed to have available storage capacity of Sb

and Sc packets respectively. For this network we define the
dissimilarity index as the aggregate amount of data that is
stored either at node b or node c and subsequently is released
and delivered to the destination node d. Notice that I(·)
depends on the network and on the time interval of interest.
The end-to-end data rate is:

Ĉad(t) = min{Ĉac(t) + Zc(t), Ccd(t)}

Zc(t+ 1) = min{Sc, [
(
Ĉac(t)− Ccd(t+ 1)

)
T0 + Zc(t)]

+}

and the dissimilarity index:

I(G,T) =

T∑
t=1

min{Zc(t), [Ccd(t+ 1)− Ĉac(t)]
+} (7)

From this analysis, it is clear that the accrued benefit
increases with the storage capacity of the nodes and is upper
bounded by I(G,T). However, determining the storage alloca-
tion policy in general graphs is a non-trivial task. One should
carefully determine in which nodes and how much storage to
add. We address this problem in the following section.

III. STORAGE CAPACITY ALLOCATION FOR GENERAL
NETWORKS

In this section, we provide a method for devising the optimal
storage allocation (placement) for a general dynamic network.
Such storage placement decisions fall into the class of network
planning problems and are made by employing traffic statistics
collected over large time periods. Recall that the performance
of a network, in terms of data transfer capability, is upper
bounded by the capacity C(Qmin) of the min-cut Qmin of
its graph [25]. This represents the maximum flow that can be
delivered from the source to the destination node. Hence, for a
time period of T units, the maximum amount of delivered data
is D = C(Qmin)T . Obviously, by increasing the capacity of
the min-cut, we increase the maximum amount of transferred
data.

Consider a directed network G = (N , E) with a set of nodes
N and a set of links E . The network is dynamic, i.e., every link
capacity Ckl(t), (k, l) ∈ E changes with time according to a
predefined pattern. We assume again a time slotted operation
t = 1, 2, . . . , T , with slot duration T0. Link capacities remain
constant within each time slot. First, we assume no storage
capacity at all nodes. We also consider the traversal time to
be identical for all links and equal to the slot duration. In
order to study network G for a certain time period, we use
the technique of time-expanded graphs.

Time Expanded Graphs (TEG) were introduced in [25] in
order to facilitate the analysis of dynamic networks. Using this
method, one can map a dynamic network G for a given time
period of T slots to an equivalent static network GT . This
way, it is possible to study the properties and the performance
of G for T slots, by applying to GT the well known methods
and results that have been derived for static graphs.

The transformation of a dynamic network to the respective
static TEG is accomplished as follows. For every node k ∈ N
of the original network G, we create in GT , T nodes, k(t),
t = 1, . . . , T . Moreover, for every arc (k, l) ∈ E of G, we add
a set of corresponding arcs (k(t), l(t+1)), t = 1, . . . , T − 1.
Hence, the time-expanded network GT = (NT , ET) contains
|NT | = |N | · T nodes. Notice that we connect node instances
in successive time slots because we have assumed that the
link traversal time is equal to one slot. In other words there
are no links connecting nodes in the same time plane t, or
in time planes with distance more than one time slots. One
can relax this assumption and follow a similar method for
connecting node instances according to the data transfer delay
(e.g., if this delay is two slots we would have connected node
instances every two slots).

The graph GT incorporates the notion of time. Namely, the
amount of data that can be transferred by network G within
time horizon T is upper bounded by the minimum cut of GT .
This is stated in the following lemma:

Lemma 1. The maximum amount of data transferred from
source to destination in a dynamic network G, within a time
horizon of T slots, is upper bounded by the capacity of the
minimum cut of the respective time-expanded graph GT .

Proof. The proof follows directly from the definition of time-
expanded graphs [25].

In this work we propose the increase of the min-cut capacity
of GT by the addition of storage links. Assume that QT =
[MT ,NT \ MT] is the initial min-cut of GT with capacity
C(QT), where MT is the set of nodes in which the source
node belongs and NT \ MT is the set containing the sink
node. The critical observation is the following. If there exists
a node k ∈ G such that k(t) ∈ MT and k(t+1) ∈ NT \
MT then we can increase C(QT) and hence the data transfer
capability of the network, by connecting k(t) and k(t+1) with
a link of capacity Sk(t). This special type of link represents
the capability of node k for storing data during time slot t
up to an amount of Sk(t) packets. With the addition of this
virtual link the new min-cut capacity of the network increases
to C(QT) + Sk(t) units. Adding enough storage to node k at
time t, renders QT a non-minimum cut. If the new min-cut

a b

d

c

fe

(a) Original graph G.

aS

b1

c1

d1

e1

b3

c3

d3

e3

b4

c4

d4

e4

b5

c5

d5

e5

b6

c6

d6

e6

b7

c7

d7

e7

b2

c2

d2

e2

fS

(1) (2) (3) (4)

(1) (2)(3)(4)

(1) (2)

(3)

(b) The Storage enhanced time-expanded graph GT .

Fig. 5. A dynamic graph with initial min-cut C(QT) = 34 packets (p). Link
capacities for T = 6 slots: Cab = (18,16,18,20,16,18), Cbc = (4,10,10,4,6,4),
Cbd = (6,16,16,4,4,6), Ccd = (6,10,12,2,12,8), Cce = (6,8,2,10,12,8), Cde =
(4,6,2,12,12,8), Cef = (10,12,14,10,20,22). In step (1) we add storage Sc(3)
=8, in step (2) Sc(4) =4 and in (3) Sd(4) =6. Final capacity is C(Qf) =42.

Q
′

T contains a node for which the above condition also holds,
then we add again storage so as to make Q

′

T a non minimum
cut.

An example of this method is given in Fig. 5 where we have
also merged all time instances of the source and the destination
node to nodes as and fs respectively. The method can be
incorporated in a greedy algorithm for storage placement in a
dynamic network G for a period of T slots. Namely, Algorithm
1 describes the proposed methodology which is applied to a
graph GT and creates a new, storage-enhanced graph Gs

T . The
latter has the same set of nodes with GT , but an increased set
of links EsT which contains all links of ET and additionally
the new storage links. In each step, the min-cut can be found
either through a flow-based technique, i.e., using max-flow
algorithms [27], or by non-flow techniques [28].

Notice here that we don’t consider storage input-output
delay in our model. This is a reasonable assumption for
networks with line speeds of few Gbps as these can be
supported by storage devices that are commercially available
today [8], [30]. For higher line speeds, we can easily extent
our study by modeling these delays through proper storage
links in the time-expanded graph [31], that incorporate this
additional delay.

Let us now discuss the complexity and the optimality of the
Storage Capacity Allocation (SCA) algorithm. The maximum

Algorithm 1: Storage Capacity Allocation (SCA)
Input : GT = (NT , ET)
Output: Gs

T = (NT , EsT), EsT ⊇ ET
1 Set EsT ← ET ;
2 conv flag ← 0; # convergence flag
3 while conv flag = 0 do
4 Find min-cut QT = [MT ,NT \MT] of Gs

T ;
5 Construct set K which contains nodes k(t) ∈ Gs

T ,
with k ∈ E , k(t) ∈MT and k(t+1) ∈ (NT \MT);

6 if K 6= ∅ then
7 Select randomly a node k(t) ∈ K;
8 Add link (k(t), k(t+1)) with Sk(t) = ε > 0;
9 while QT is the min-cut do

10 Sk(t)← Sk(t) + ε; # storage increase
end

11 EsT ← EsT ∪ (k(t), k(t+1))
else

12 Qf ← QT ; # final capacity reached
13 conv flag ← 1;

end
end

number of added storage links is bounded by the number of
nodes. Additionally, the maximum amount of storage place-
ment in each node is confined by the capacity of the links.
In other words, storage addition will eventually result in a
minimum cut consisting only of communication links (i.e.,
links between different nodes and not links between different
time instances of the same node). After this point, adding more
storage cannot further increase the min-cut of the network.
Hence, we can find the storage placement beyond which no
further network improvement is achievable.

However, it is easy to see that this greedy algorithm may
result in excessive storage placement. Namely, the storage
link added in each iteration may render previously added
storage capacity redundant. Our next goal is to devise a
method for finding the minimum amount of storage capacity
that maximizes the network data transfer capability. As we
will explain in the sequel, this can be achieved if storage is
considered in conjunction (i.e., jointly) with routing. In the
following we provide a method for deriving the optimal joint
storage control and routing policy for dynamic networks.

IV. JOINT STORAGE CONTROL AND ROUTING
OPTIMIZATION

In this section we define and solve the joint storage con-
trol and routing (JSR) optimization problem as a maximum
flow problem on the respective time-expanded graph Gs

T =
(NT , EsT). The solution yields the optimal store and routing
decisions that maximize data transfer for a certain time horizon
of T slots. Our methodology builds upon the network utility
maximization framework [11], [12] and extends it by the joint
consideration of these two different types of resources (storage
and link bandwidth), and the employment of the ε-relaxation
algorithm.

Specifically, consider the dynamic network G = (N , E)
for the time interval T . Using the SCA algorithm, we can

TABLE II
VARIABLES AND NOTATION

Symbol Description
k, l Nodes of initial graph G = (N , E), k, l ∈ N
i, j Nodes of GT = (NT , ET), i, j ∈ NT

(i, j) Link of GT , (i, j) ∈ ET , with i , k(t), j , l(t+1)

xij Flow sent over link (i, j) ∈ ET
yin Flow stored at k ∈ N in t, i , k(t), n , k(t+1)

xds End-to-end transferred data in T slots
Fi Forward communication (child) nodes of i ∈ NT

Bi Backward communication (parent) nodes of i ∈ NT

construct the storage-enhanced graph Gs
T which has the de-

sirable property that its performance is not constrained by the
storage capacity of its nodes. Given such a network, our goal
here is to find how much data we should route over each link
and store in each node, in every time slot, so as to maximize
the amount of end-to-end transferred data. We will prove that
this policy also ensures the minimum storage usage. In other
words, while the previous algorithm is possible to introduce
excessive storage placement, the JSR algorithm, which we will
define in the sequel, makes use only of the minimum required
storage capacity.

We need to emphasize here that the solution of the JSR
problem does not presume the execution of algorithm SCA
so as to find the storage-enhanced graph Gs

T . Instead, we can
construct and use a network (again, we use the notation Gs

T

for this graph) that stems from GT by adding at each node
i ∈ NT storage capacity that is bounded by an upper limit
Smax
i . The exact amount of storage that is actually required -

and hence the storage allocation - will be found by the solution
of the max-flow problem that we present in the sequel.

Let us now define for each node k ∈ N of G the storage
control vector Sk = (Sk(t) : t = 1, 2, . . . , T), where Sk(t) is
the amount of data that is stored at node k at time t. Also, we
introduce for every link (k, l) ∈ E the routing control vector
Rkl = (Rkl(t) : t = 1, 2, . . . , T) where Rkl(t) is the amount
of data that is sent over link (k, l) at time t. Finally, we define
the network storage control policy S and the network routing
policy R, for the time period of interest, as follows:

S = (Sk : k ∈ N), R = (Rkl : (k, l) ∈ E) (8)

The JSR problem is formally described as follows:

Definition 1. Joint Storage Control and Routing Max-
Flow Problem (JSR Problem). Given a dynamic network
G = (N , E) with a single source and a single destination,
and with nodes with certain storage capacity Smax

i , i ∈ N ,
find the storage control policy S∗ and the routing policy R∗,
that maximizes the amount of data transferred from source to
destination in a given time horizon of T slots.

We focus on a solution approach based on the ε-relaxation
method [26] which is amenable to distributed and asyn-
chronous implementation. This means that each node will be
able to independently decide how much data to store and route
over each link, in every slot. The nodes however need to
coordinate their decisions and agree about the optimal JSR
policy. This is accomplished through message passing. The
circulated messages contain the information that is related to

the traffic load for each node, the congestion on its links,
and their available storage capacity. We stress here that the
proposed algorithm can be also executed centrally whenever
this is possible, e.g., for small-scale networks. In this case, the
decomposability property of the algorithm can be exploited so
as to enable its parallel and hence faster execution.

The proposed scheme can be implemented with an overlay
mechanism which adjusts the rate allocation and storage
utilization for each link and each node according to the solu-
tion of the respective optimization problem. Such distributed
mechanisms are particularly important for large-scale networks
since (i) they do not presume the existence of a central con-
troller, (ii) allow the computation of the policy to be executed
(and hence shared) by many nodes, and (iii) do not require the
information about storage and link capacity availability to be
communicated to a central point for calculating the policy and
back to the nodes for implementing it. Decentralized network
mechanisms have received paramount research attention the
last few years where various distributed NUM approaches [24]
have been proposed for wired and wireless networks [11], [12].

A. JSR Problem Formulation
First we add to Gs

T an artificial link (d, s) connecting the
sink d with the source s. This will facilitate the modeling
and the analysis of the problem. Each node i ∈ NT which
corresponds to a node k of graph G for a certain time slot t,
i , k(t), is connected with a node m ∈ NT which represents
the previous instance of the same node, i.e., m , k(t−1).
Similarly, each node i ∈ NT is connected with a node n ∈
NT that represents the subsequent instance of the same node,
i.e., n , k(t+1). The capacity of these links represent the
available storage at node k at slots t and t+1. For each node
i ∈ NT we define the set of forward (child) communication
nodes Fi = {j : (i, j) ∈ ET } \ {n}, and the set of backward
communication nodes Bi = {j : (j, i) ∈ ET } \ {m}.

Summarizing, there exist two classes of links in the ex-
panded graph:
• The communication links that connect two different nodes
i and j at a specific time slot t with capacity C = {Cij :
i ∈ NT , j ∈ Fi}.

• The storage links that connect different time instances of
the same node with (maximum) storage capacity Smax =
{Smax

i : i ∈ NT , i , k(t), k ∈ N}.
Since the notion of time is incorporated in the time-expanded
graph the capacity of all links is measured in data packets.
Also, packet size is considered very small and hence the
capacities of communication and storage links are considered
real (positive) numbers.

Let us define the flow3 matrix for the graph Gs
T as:

x = (xij ∈ R+ : i ∈ NT , j ∈ Fi) (9)

where xij ≥ 0 denotes the amount of data that is sent over
link (i, j) with i , k(t), j , l(t+1) and (k, l) ∈ E . Similarly,
we define the store decision matrix:

y = (yin ∈ R+ : i ∈ NT , i , k(t), n , k(t+1), k ∈ N) (10)

3 With a slight abuse of terminology, we use the term flow for the amount
of data ransferred between nodes during each slot. The same term is used
also for the amount of data that is stored at each node in each slot.

where yin ≥ 0 denotes the amount of data that is stored at
node k ∈ N during time slot t. Clearly, there is a one-to-one
mapping from x to R and from y to S, which is shown in
Table III.

The optimal storage control and routing policy (x∗, y∗)
for the time period T is derived from the solution of the max-
flow problem which is defined over the corresponding time-
expanded graph (JSR Max-Flow Problem):

min
x,y

(−xds)

subject to∑
j∈Fi

xij + yin =
∑
j∈Bi

xji + ymi, i ∈ NT \ {s, d} (11)

0 ≤ xij ≤ Cij , i ∈ NT , j ∈ Fi (12)

0 ≤ yin ≤ Smax
i , i, n ∈ NT (13)∑

j∈Bd

xjd = xds,
∑
j∈Fs

xsj = xds (14)

Equation (11) is the flow conservation constraint, and xds
is the amount of data that is transferred from destination to
the source node through the added artificial link. Due to (14),
this quantity is equal to the data delivered to the destination
node. After solving the JSR problem, we find the respective
routing and store variables, R∗kl(t) and S∗k(t) respectively of
network G using Table III.

Finally, please notice that the JSR policy can be also derived
for the case that there is uncertainty about the actual traffic and
therefore the available (residual) capacity of the links. This
can be achieved by robust optimization techniques [33]. In
particular, for the JSR problem we only need to consider the
worst case estimations (highest traffic, thus lowest available
link capacities) for the upper bounds of the routing variables.
This will ensure that the obtained policy is feasible even under
some estimation errors4 .

B. Distributed Algorithm for the JSR Problem

The JSR problem is a constrained optimization problem and
can be solved by dual ascend methods [26]. These methods
solve the respective dual problem by iteratively updating the
dual variables so as to improve the dual objective function.
There are two classes of such algorithms: the primal-dual and
the relaxation methods which use different ascent directions
but admit fairly similar implementation. The relaxation method
is usually faster in practice.

Since objective of the JSR problem is a linear function
(hence the dual objective is non-differentiable) typical relax-
ation methods (or primal-dual methods) may not converge
to the optimal problem solution5 . Therefore, we use the ε-
relaxation method which converges in polynomial time and is
highly suitable for distributed implementation [26], [27]. The
underlying idea is that dual variable updates are allowed even

4 For example, if eij denotes the maximum possible estimation error for the
available capacity of link (i, j) ∈ ET , then we can substitute the respective
capacity upper bound Cij with Ĉij = Cij − eij .

5 Alternatively, one can use primal-dual methods with subgradient updates
and properly selected step sizes.

TABLE III
VARIABLE MAPPING FROM GRAPH G TO GT

Variables of G = (N , E) Variables of GT = (NT , ET)

Rkl(t) xij , i , k(t), j , l(t+1)

Sk(t) yin, i , k(t), n , k(t+1)

0 ≤ Rkl(t) ≤ Ckl(t) 0 ≤ xij ≤ Cij

0 ≤ Sk(t) ≤ Smax
k (t) 0 ≤ yin ≤ Smax

i

Algorithm 2: JSR Max-flow
Input : Gs

T = (NT , EsT)
Output: Optimal store S∗ and routing R∗ policies
Execution: continuous in a time sequence
τ = (0, τ0, 2τ0, . . .) until termination;

1 τ ← 0;
2 term← 0; # termination flag

while term = 0 do
3 i← random{NT };
4 proc← random{1, 2, 3, 4}; # select a random proc.
5 Node i executes Procedure proc;
6 Update gi(τ) through (17);
7 if [gj(τ) = 0&xij(i, τ) = xji(j, τ)& pj(τ) =

pj(i, τ), ∀i, j ∈ NT] then
term← 1;

end
8 τ ← τ + τ0;

end

if they worsen the dual cost function. The produced pairs of
primal-dual variables satisfy the ε-complementary slackness
which is a perturbed version of the typical complementary
slackness conditions. Finally, this algorithm can be executed in
an asynchronous fashion which renders it suitable for networks
with signaling delays (e.g., delays in the circulation of control
messages among the nodes).

First, we define the Lagrange function L(·) by relaxing
constraint (11) and introducing the vector of dual variables
p = (pi : i ∈ NT):

L(x,y,p) = −xds+
∑
i∈NT

∑
j∈Fi

(pj−pi)xij+
∑
i∈NT

(pn−pi)yin

This relaxation admits an interesting interpretation since it
decouples the storage and routing decisions of the nodes. The
respective dual problem is:

max
p

q(p) (15)

where

q(p) = min
0≤xij≤Cij ,0≤yin≤Smax

i

L(x,y,p) (16)

The ε-relaxation converges to the optimal solution under some
mild conditions. We omit the very details and refer the reader
to [26, Chap.5.3].

In a distributed setting the variables are circulated among
nodes and therefore they need to be time-stamped. Notice
that these time stamps τ refer to the algorithm execution
time and they should not be confused with the actual time
t that represents the slots of T . The basic idea is to exploit

Procedure 1- Update of Local Variables
if gi(τ) > 0 then

Update local variables: pi(τ), pj(i, τ), xij(i, τ),
xji(i, τ), yij(i, τ), yji(i, τ), by executing Steps 1-4
of the ε-relaxation alg. [26, Chap.5.3];

end

Procedure 2- Notification.
Send {pi(τ), xij(i, τ)} to every child node j ∈ Fi;
Send {pi(τ), xji(i, τ)} to every parent node j ∈ Bi;

Procedure 3- Coordination.
For every message received at τ ′ < τ from a child node
j ∈ Fi, node i updates its variables:

if pj(i, τ) ≤ pj(τ ′) then
pj(i, τ)← pj(τ

′);
end
if [pi(τ) ≤ pj(τ ′) + α] & [xij(i, τ) > xij(j, τ

′)] then
xij(i, τ)← xij(j, τ

′);
end
For every message received at τ ′ < τ from a parent node
j ∈ Bi, node i updates its variables:

if pj(i, τ) ≤ pj(τ ′) then
pj(i, τ)← pj(τ

′);
end
if [pi(τ) ≤ pj(τ ′)− α] & [xji(i, τ) < xji(j, τ

′)] then
xji(i, τ)← xji(j, τ

′);
end
where α = −1 if (i, j) = (d, s) and α = 0

Procedure 4- Store Decisions Update.
For every message received at τ ′ < τ from instances
m = i(t−1) and n = i(t+1), update store decisions:

if pn(i, τ) ≤ pn(τ ′) then
pn(i, τ)← pn(τ

′);
end
if [pi(τ) ≤ pn(τ ′)] & [yin(i, τ) > yin(n, τ

′)] then
yin(i, τ)← yin(n, τ

′);
end
if pm(i, τ) ≤ pm(τ ′) then

pm(i, τ)← pm(τ ′);
end
if [pi(τ) ≤ pm(τ ′)] &[ymi(i, τ) < ymi(m, τ

′)] then
ymi(i, τ)← ymi(m, τ

′);
end

the separability property of the dual problem and group the
decision variables per node. Specifically, each node i ∈ NT

maintains the following variables:

• pi(τ): dual variable (or price) of node i at time τ .
• pj(i, τ): dual variable of j ∈ Fi ∪ Bi ∪ {n} ∪ {m},

communicated from j to i at time τ . This is the local
copy of the dual variable of j, updated by i.

• xij(i, τ): amount of data i forwards to j ∈ Fi at time τ .
• xji(i, τ): amount of data that i decides to admit from

node j ∈ Bi at time τ .

• yin(i, τ), ymi(i, τ) : amount of data i stores during slots
t− 1, t, where i , k(t), m , k(t−1) and n , k(t+1).

• gi(τ): data surplus of i, i.e., :

gi(τ) =
∑
j∈Bi

xji(i, τ)−
∑
j∈Fi

xij(i, τ) +

+ ymi(i, τ) + yin(i, τ) (17)

The nodes circulate messages with their variables in order
to coordinate. For example, the final value of the data that
node i pushes to node j should be equal to the data that node
j decides to admits, i.e., x∗ij = x∗ji. The detailed description
of the method is given in Algorithm 2 (JSR Max-flow). The
algorithm is executed continuously and the nodes adjust their
decisions in an asynchronous fashion.

Specifically, the nodes update their routing and store deci-
sions in successive time instances, with very small distance
of τ0 > 0 units, until the optimal solution is reached. In each
time instance, a randomly selected node i ∈ NT executes
(randomly) one of the four Procedures 1 to 4 (for more details
about the procedures please refer to [26]). Namely, each node i
executes Procedure 1 to update its variables if the local surplus
gi(τ) is currently non-negative. Also, node i may execute
Procedure 2 in order to notify its neighbors about its routing
and store decisions as well as its dual variables, by sending
certain notification messages.

Similarly, a node may select to execute Procedure 3 and
coordinate its strategy with its neighbors, by exploiting the
notification messages it has received from them. That is, each
node i uses the latest notification messages it received and
updates its local copies of the variables pj(i, τ), xij(i, τ) and
xji(i, τ) for each one of its neighbors. Finally, a node may
update the store decisions using Procedure 4. Notice that each
node k of graph G = (N , E) can execute all these tasks for
each slot, i.e., for each one of its time instances i = k(t) ∈ NT ,
obviously without requiring message passing among them.

The algorithm converges when the nodes have reached
consensus about the JSR policy and the surplus gi(·) is zero,
i.e., when (17) is satisfied. Additionally, each node can initiate
the execution of the algorithm if it detects local changes in its
storage availability or the expected capacity variation patterns.
In this case, the node can execute Procedure 1 that in turn will
trigger the execution of Algorithm 2 from the affected nearby
nodes. This algorithm has time complexity of O(N3

T), where
NT = N · T is the number of nodes in the time-expanded
graph GT . Therefore, its complexity with respect to the initial
graph G is non-polynomial [31], since, in general, the time
period T is not necessarily polynomial on the input size N .

V. MULTICOMMODITY JSR POLICIES

We will now extend our study to the case where data
from two or more different sessions, which we call henceforth
commodities, need to be transferred to respective destinations.
We need to emphasize here that a commodity, in this work,
represents flow aggregates where the aggregation is performed
e.g., based on the application (and not individual flows).
For example, in the context of ISP backbone networks, an
application can be a bulk-data transfer, or streaming, or inter-
data center communication from one PoP to another PoP.

Our goal is to derive the Multicommodity JSR policy
(MJSR) that determines how much traffic of each commodity
should be routed over each link and stored in each intermediate
node, in every time slot. The different flows may have different
delivery priorities due to their specific QoS requirements or
respective SLAs (e.g., see [34]). We assume that the network
is aware of these priorities and takes them into account in the
respective resource allocation decisions.

A. Example of Storage Sharing Policy

Let us give at this point an example of storage sharing.
Consider the network of Fig. 6(a) which conveys two com-
modities, denoted (1) and (2), with source and destination
pairs (a, d) and (b, e) respectively. Both commodities flow
through node c which has a certain storage capacity of Sc

packets. For simplicity, we assume that Cac(t) = Cbc(t) and
Ccd(t) = Cce(t), t = 1, 2, . . . , T . In Fig. 6(b) we depict for
each commodity the maximum amount of transferred data for
various allocations of storage capacity Sc. We denote with
S
(1)
c the portion of storage that is allocated to commodity (1)

and S
(2)
c the respective storage capacity for commodity (2).

Clearly, the total storage capacity constraint must be always
satisfied, i.e., S(1)

c + S
(2)
c = Sc.

For the upper plot we have assumed that Sc = 55. We
observe that there is a set of storage capacity values, S(1)

c and
S
(2)
c , for which the transferred data is maximized for both

commodities. Clearly, in this case, where the storage resources
are ample, it is straightforward to derive the optimal storage
control policy.

On the contrary, for smaller values of Sc, the aggregate
amount of data that need to be stored may exceed the
storage capacity. Therefore, the storage sharing policy must
determine how much storage capacity should be allocated to
each commodity. This is depicted in the lower plot of Fig. 6(b),
where Sc = 40. It can be seen that one cannot simultaneously
maximize the transferred data for both commodities.

B. Multicommodity JSR Policy

We can define the multicommodity max-flow problem by
extending the single commodity JSR problem. Specifically, we
consider a set W = {1, 2, . . . ,W} of W = |W| commodities
that are transferred over the same dynamic network G within
a time period T . First, we introduce the respective multicom-
modity flow and storage control matrices. Specifically, we
define xW = (x

(w)
ij : i ∈ NT , j ∈ Fi, w ∈ W), where

x
(w)
ij ≥ 0 denotes the amount of data of commodity w that

is sent over link (i, j) with i , k(t) and j , l(t+1), (k, l) ∈ E .
Similarly, we define the matrix yW = (y

(w)
in : i ∈ NT , i ,

k(t), n , k(t+1), w ∈ W) where y(w)
in ≥ 0 denotes the amount

of commodity w that is stored at node k ∈ N during time slot
t, where i = k(t).

Accordingly, we define the priority parameter rw ≥ 0,
∀w ∈ W . The larger the value of rw is, the highest is the
priority of commodity w. These parameters are determined by
the network which is assumed to be aware of the specific needs
of each commodity. Additionally, they can be selected based

a

b

d

c

e

Sc

Commodity (1)

Commodity (2)

(a) Two commodities flowing through node c.

0 10 20 30 40 50 60
20

25

30

35

40

45

Storage capacity offset S

 D
ata

 (p
ac

ke
ts)

Max transferred data for different storage sharing policies

0 5 10 15 20 25 30 35 40
20

25

30

35

40

45

Storage capacity offset S

Da
ta

(pa
ck

ets
)

Commodity (1)
Commodity (2)

Sc
(1)=0 + S

Sc
(2)=Sc − S

Sc
(1)=0 + S

Sc
(2)=Sc − S

(b) Maximum amount of transferred data.

Fig. 6. Transfer of two commodities via node c which has storage capacity
of Sc packets. Nodes (a, d) and (b, e) are the source-destination pairs for
commodity (1) and (2) respectively. Link capacities vary Cac , Cbc

=(10,12,14,2,2,4,6,0) and Ccd , Cce =(6,2,0,10,12,10,14,0). S(1)
c and S

(2)
c

is the storage capacity allocated to com. (1) and (2) respectively.

on certain service level agreements that the network (e.g., and
ISP) has with his clients. The optimal MJSR policy is given
by the solution of the following problem:

max
xW ,yW

∑
w∈W

rwx
(w)
ds (18)

subject to∑
j∈Fi

x
(w)
ij + y

(w)
in =

∑
j∈Bi

x
(w)
ji + y

(w)
mi , i ∈ NT \ {s, d}, w ∈ W

(19)
0 ≤

∑
w∈W

x
(w)
ij ≤ Cij , ∀i ∈ NT , j ∈ Fi (20)

0 ≤
∑
w∈W

y
(w)
in ≤ S

max
i , ∀i, n ∈ NT (21)

∑
j∈Bd

x
(w)
jd = x

(w)
ds ,

∑
j∈Fs

x
(w)
sj = x

(w)
ds , ∀w ∈ W (22)

Constraints (20) and (21) indicate that the link capacities and
node storage must be shared among the different commodities.

The MJSR problem can be solved in a distributed fashion
using a methodology as the one we presented for the JSR
problem. For example, one can use a relaxation method where
the constraints that couple the different flows will be relaxed
and each node, for each commodity, will decide the routing
and store policy based on the circulated dual variables. Due
to the different priority parameters, the problems for the
different commodities will admit different solutions regarding
link capacity and storage capacity allocations. As it will be
shown in the numerical results section, the priority parameters

0 100 200 300 400 500
15

20

25

30

35

40

Storage capacity Sb at intermediate node b (packets)

En
d−

to
−e

nd
 d

at
a

tra
ns

fe
r d

el
ay

 fo
r D

=6
00

Delay − storage curves for a 3−node network and different I

I=884
I=852
I=934

Fig. 7. Delay - Storage curves for the transfer of D = 600 data packets and
various values of I , for network of Fig. 2.

bias the routing and storage control decisions of the network.
The higher rw is, the more network resources commodity w
will use and hence the larger will be the respective delivered
amount of data.

VI. PERFORMANCE EVALUATION

In this section we provide numerical results, based on actual
traffic traces, that verify the validity of our model and the
applicability of our methodology. The performance metric is
either the amount of data that can be transferred within a given
time period or, equivalently, the incurred delay for the transfer
of a certain amount of data from source to destination. We
begin with the 3-node linear network of Fig. 2 the operation
of which is described by (1)-(5). In Fig. 7(a) we depict the
delay for the transfer of D = 600 data units from node a to
c for different values of I(G,T), and T = 40. As storage
capacity Sb increases, the incurred delay reduces down to a
minimum value. For example, for I = 934, storage addition
Sb = 360 yields the minimum possible delay of M = 17
slots, which cannot be further improved even if one adds
more storage. Also, Fig. 8 depicts the maximum amount of
transferred data D, for a time period of T = 40 time slots
from source to sink in the network of Fig. 2. We see that
this quantity increases with the available storage Sb up to a
certain point, and further increase in storage capacity does not
improve the performance of the network. This maximum value
depends on the dissimilarity index I of the links for the time
period T .

Next, we consider the dynamic network of Fig. 5(a) and
study the transfer of three commodities, denoted (1), (2), and
(3) from node a to node f . Intermediate nodes b, c, d and
e have storage capacity which is uniformly distributed in the
interval Smax ∈ [200, 400]. Similarly, the link capacities are
time varying and uniformly drawn from the interval Cij ∈
[100, 200]. We study the network for a time interval of T = 10
slots. Our goal in this case is to investigate the impact of
the priority parameters r1, r2, and r3 on the amount that is
transferred from each commodity, where we have set r1 = r3.
These results are plotted in Fig. 9. We can see that as the
ratio k = r1/r2 = r3/r2 increases, the transferred data of

0 100 200 300 400 500
400

600

800

1000

1200

1400

1600

1800

Storage Sb at intermediate node b (packets)

M
ax

im
um

 a
m

ou
nt

 o
f t

ra
ns

fe
rr

ed
 d

at
a

Maximum data transfer Vs Storage Sb for Different I

I=934
I=884
I=852

Fig. 8. Maximum amount D of transferred data in T = 40 time slots for
the network of Fig. 2 for different intermediate storage Sb.

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

Priority Parameter Ratio k=r1/r2, r3=r1 (x 100)

D
at

a
(P

ac
ke

ts
)

Max Transferred Data for 3 Commodities Vs Priority Ratio k

Commodity (2)
Commodity (1)
Commodity (3)

Fig. 9. Maximum amount of transferred data for 3 commodities and different
priorities, for the network in Fig. 5.

commodity (2) decrease and commodities (1) and (3) share
the network resources.

In Figure 10 we show the topology of the operational
backbone network of a large European ISP (Tier-1). These
networks contain typically 10 to 20 central points of presence
(PoP), e.g., aggregation nodes in large cities. Each one of the
PoPs supports a set of smaller nodes (e.g., those of smaller
cities) connected in a star topology. Please notice that there
is link redundancy only in the backbone network and hence
it is possible to optimize storage allocation and routing only
in that part of the network. Such a Tier-1 ISP can also offer
in-network virtualized storage and bandwidth elastic resources
to third parties, e.g., CDNs, or even to end-users [29].

In Fig. 11 we studied the maximum possible performance
benefits for the above network, in terms of end-to-end data
transfer (normalized values are used). To understand the im-
portance of the resource elasticity assume that the capacity
variation pattern (or, in general, the pattern of the available
bandwidth) is initially such that the optimal total storage
allocation according to the JSR algorithm is in point A. Now,
assume that after few time windows T , the links capacity avail-
ability changes and the updated JSR solution dictates that it is
necessary to reserve more storage. Due to the storage elasticity,
it is possible to update the policy and shift the system to point

Fig. 10. An operational European ISP backbone network of 12 PoPs.

0 2 4 6 8 10 12 14 16 18 20
300

350

400

450

500

550

600

650

Storage at intermediate nodes (packets per node)

M
ax

im
um

 t
ra

ns
fe

rre
d

da
ta

 (
pa

ck
et

s)

T=48
T=72

A
B

Fig. 11. Benefits from additional storage reservation for the network of Fig.
10. The different lines in each plot correspond to different time windows,
T = 48 and T = 72 slots. Points A and B correspond to the initial and the
subsequent reservations of in-network storage, respectively.

B. This yields a performance improvement of the order of
12% as can be seen in Fig. 11. Also, it is worth noticing that
the longer is the time window over which the JSR optimization
is realized, the larger is the benefit from in-network storage.
In NFV systems such additional information can be exploited
dynamically, i.e., whenever becomes available.

Finally, in Fig. 12 we present actual traffic traces from
two links (called A-B, and B-C) of the network in Fig. 10,
measured over a period of 15 days and with a slot window
of 5-minutes. Due to confidentiality issues, we present only
the normalized traffic volumes; we give in the sequel more
details on the order of magnitude for these quantities. Let
us focus first on the upper subfigure. Based on the actual
link utilization, the volume of the (normalized) traffic that is
actually transferred over this link is D1 = 11, 665 · 103 data
units. However, if we exploit the off-peak traffic windows of
this link, then we can transfer additional 9, 945 · 103 units.
Therefore, the usage of storage in the origin node of this link
can achieve an 85% increase of the volume of the transferred
data, over a period of 15 days. Clearly, these numbers refer to
the maximum possible data transfer increase, and are only
achievable if the incoming links to the node have highly
diverse traffic patterns. In most cases, we expect that the
performance benefits will be smaller, due to the correlation

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.5

0

0.5

Time Slots − (5 minutes slots)

N
o
rm

a
liz

e
d
 I
S

P
 L

in
k

U
til

iz
a
tio

n

Link A−B

Link B−C

Traffic Diversity

Fig. 12. Upper two subplots: normalized traffic (utilization) in two successive
links of a large European ISP. Lower subplot: their diverse traffic evolution
over time, which captures the amount of data that can be stored and pushed
within a time interval of 15 days.

of the traffic variation patterns of the different links.
For example, if we consider the traffic pattern of a suc-

cessive link (in the network of Fig. 10) (link B-C), then we
can plot the difference between the traffic of the two links. In
case there is available storage capacity in node B, then we can
increase the amount of data that can be conveyed from node
A to C. Namely, we see that in-network storage in this case
can achieve an end-to-end data transfer increase of 10.04%
compared to the scenario with no storage at node B. Typical
links that connect the different points-of-presence (PoP) of
large ISPs have capacity of 1Gbps and more often of 10 or
40Gbps [37]. Therefore, a data transfer increase of this order
(for the 15-days time interval) corresponds to 16,686 Gbytes
for the 1Gbps links, to 166,860 Gbytes for the 10Gbps links,
and to 667,440 Gbytes for the 40Gbits links.

VII. RELATED WORK

Storage has been considered in wireless networks in the
context of Delay Tolerant Networks (DTN) [21] and more
recently, in vehicular networks [35]. In these cases data is
stored at intermediate nodes and is transmitted whenever
required links are available, e.g., see [36] and references
therein. The objective is to guarantee delivery of packets,
and storage is used whenever routing is not feasible. On the
contrary, we find the storage placement and control policies
in order to reduce data transfer delay.

Another instance of storage-assisted networking is presented
in [13] and [37]. The authors consider tandem networks that
span across large areas, and derive store-and-forward policies
for cost-efficient transfer of bulk data by exploiting already-
paid-for bandwidth. This methodology has been also applied
to datacenters [16] serving requests that follow strong diurnal
patterns [4]. In all these cases, the benefits arise due to the
periodicity of the users’ demand and the fact that the links
are dimensioned based on peak traffic values. In this class of
works storage allocation is fixed and solutions are centralized.

In more abstract modeling terms, [38] presents a centralized
algorithm that yields the minimum delay flow for a certain

time period, with given link capacity patterns. The requirement
for complete information is relaxed in [39] where the network
is described by a set of stochastic processes, one for each link,
with known state space. The objective is to find the shortest
path for the delivery of a packet to the destination. It is an
online problem which the authors prove that is intractable.
Finally, an interesting survey of flow algorithms in dynamic
networks with storage-capable nodes is provided in [31].

At item level, i.e., file or file chunk, there exist various
caching policies which identify item placement at node caches
based on their popularity so as to minimize item retrieval
time. For example in [17] a wireless network architecture of
distributed caching is used to satisfy requests while consum-
ing low backhaul bandwidth. Additionally, in content centric
networking in-network storage affects the content availability
and the network performance in terms of content retrieval
delay [40]. Similarly, other recent network architectures like
the publish/subscribe systems [41], or peer-to-peer video on-
demand solutions [42] make use of in-network storage. All
these different classes of application scenarios reveal the im-
portant role of node storage and further motivate our analytical
study of storage-assisted networking.

In an even smaller scale the class of Backpressure-based
dynamic routing Policies (BP) [43], [44] study queues which
are orders of magnitude less than the mass storage we consider
here. BP policies focus on the buffer-level traffic dynamics and
extract the capacity region of the network. On the contrary,
we focus on storage policies at the flow level, and require
the knowledge only of the average aggregate traffic in each
link, which most often follow a known periodic pattern.
For these dynamics we try to assess the storage amounts
and the routing that achieve the maximum end-to-end data
transfer capacity. Our methodology is closely related to the
network utility maximization framework [24] that has been
extensively applied in communication networks [11]. Yet, we
depart significantly from previous works as we present a novel
model for the joint optimization of storage and link capacity,
and employ the ε-relaxation algorithm that can be executed,
when required, in a distributed and asynchronous fashion [26]
. This is particularly important especially for large networks,
since it allows fast calculations of the JSR policy, is robust and
adaptive to small network changes, and lightweight in terms
of communication overheads.

Joint storage control and routing algorithms are gaining
increasing attention from industry. This is best exemplified by
the recent decisions of many telecommunication companies
to deploy their own content distribution networks, as L3
did [45], or collaborate closely with CDNs, as AT&T [46]
and Swisscom [47] did with Akamai. At the same time,
the emering paradigm of NFV systems [9], [32] and related
products [6], [7], [8] which can support fast storage allocation
policies, render our approach of high practical importance.
Namely, our work provides a solid framework for jointly
allocating storage and bandwidth capacity in such systems by
exploiting their resource elasticity. Despite the proliferating
works about the technical challenges in NFV systems, e.g.,
[48], [49], this allocation problem has been not studied before.

VIII. CONCLUSIONS

In this work we explored under what conditions and in
what extent in-network storage can improve the data transfer
capability of communication networks. The optimal storage
allocation policy is the one that guarantees maximum benefit
from storage use and can be derived for every network
using the presented Storage Capacity Allocation algorithm. In
order to realize this benefit, storage must be considered in
conjunction with routing. The joint storage control - routing
(JSR) policy can be derived through the solution of a single-
or multicommodity max-flow problem defined over a time-
expanded graph. At the same time, JSR policies utilize the
minimum necessary storage capacity. The presented policies
can be derived (and implemented) through optimization algo-
rithms that are amenable both to centralized and to distributed
execution. This is very important especially for large-scale
systems.

The proposed framework extends the network utility max-
imization methodology and provides a unified treatment of
storage-assisted networking. It can be applied to small or
larger ISPs, datacenter networks or even to cellular networks.
In all these cases, it is desired to work with links with high
aggregation of traffic and monitoring data that are frequently
updated. A variety of different products are nowadays com-
mercially available to support such architectures, and related
forward-looking solutions for network functions virtualization
have already been supported and deployed by major market
players. Clearly, the emerging paradigm of NFV offers a
fertile ground for the application of these resource allocation
methods. Moreover, this work opens many interesting research
directions. For example, one could study how storage can be
used to optimize network performance with respect to other
criteria such as the energy consumption per transferred byte.

REFERENCES

[1] Ericsson, “Mobility Report: On the Pulse of Networked Society”, 2014.
[2] Cisco White Paper, “Cisco visual networking index: Global mobile data

traffic forecast”, Cisco Public Information, Feb. 2016.
[3] Bloomberg News, “AT&T to Pay 1.93 Billion for Mobile Spectrum”,

2010.
[4] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The Cost of a

Cloud: Research Problems in Data Center Networks”, ACM SIGCOMM
CCR, vol. 39, no. 1, 2009.

[5] Internet Engineering Task Force (IETF), “A Survey of In-Network Storage
Systems”, http:// tools.ietf.org/html/rfc6392, 2011.

[6] Hewlett Packard, “Why is this Storage Guy Getting so Caught up in
NFV?”, HP Storage Blog, March 2014.

[7] Hewlett Packard, “HP 3PAR StoreServ Storage”, Primary Storage
Architecture Products, http://www8.hp.com/uk/en/products/data-storage/
3parstoreserv.html, Nov. 2014.

[8] NetApp, “Flexpod solutions”, http://www.netapp.com, 2013.
[9] European Telecommunications Standards Institute,, Whitepaper, “Net-

work Functions Virtualization”, [Online]: https://portal.etsi.org/NFV/
NFV White Paper.pdf

[10] G. Iosifidis, I. Koutsopoulos, and G. Smaragdakis, “The Impact of
Storage Capacity on End-to-end Delay in Time-varying Networks”, IEEE
Infocom, 2011.

[11] D. P. Palomar, and M. Chiang, “A Tutorial on Decomposition Methods
for Network Utility Maximization”, IEEE JSAC, vol. 24, no. 8, 2006.

[12] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as Optimization Decomposition: A Mathematical Theory of Network
Architectures”, IEEE Proceedings, vol. 95 , no. 1, 2007.

[13] N. Laoutaris, P. Rodriguez, “Good Things Come to Those Who (can)
Wait or How to Handle Delay Tolerant Traffic and Make Peace on the
Internet”, In Proc. of ACM HotNets-VII, 2008.

[14] Y. Chen, S. Jain, V. Adhikari, Z. L. Zhang, and K. Xu, “A First Look
at Inter-Data Center Traffic Characteristics via Yahoo Datasets”, in Proc.
of IEEE Infocom, 2011.

[15] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk,
and N. Taft, “Structural Analysis of Network Traffic Flows”, in Proc. of
ACM Sigmetrics, 2004.

[16] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez,“Inter-datacenter
bulk transfers with netstitcher”, in Proc. of ACM Sigcomm, 2011.

[17] N. Golrezaei, K. Shanmugam, and A. G. Dimakis, “Femtocaching:
Wireless video content delivery through distributed caching helpers”, in
Proc. of IEEE Infocom, 2012.

[18] S. Woo, E. Jeong, S. Park, J. Lee, S. Ihm and K. Park, “Comparison of
Caching Strategies in Modern Cellular Backhaul Networks”, in Proc. of
ACM MobiSys, 2013.

[19] K. Poularakis, G. Iosifidis, A. Argyriou, and L. Tassiulas, “Video Deliv-
ery over Heterogeneous Networks: Optimizing Cost and Performance”,
in Proc. of IEEE Infocom, 2014.

[20] The Guardian, “iOS 8 Causes Bandwidth Spikes Nationwide, Despite
Slow Uptake”, [Online]: http://www.theguardian.com/technology/2014/
sep/18/apple-ios-8-bandwidth-spikes-uk-uptake, Sep. 2014.

[21] A. Krifa, C. Barakat, T. Spyropoulos, “Optimal Buffer Management
Policies for Delay Tolerant Networks”, in Proc. of IEEE SECON, 2008.

[22] M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, and
Y. Zhang, “Experience in measuring Internet backbone traffic variability:
Models, Metrics Measurements, and Meaning”, in Proc. of ITC-18, 2003.

[23] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger, “Un-
derstanding Online Social Network Usage from a Network Perspective”,
in Proc. of ACM IMC, 2009.

[24] F. P. Kelly, “Charging and Rate Control for Elastic Traffic”, European
Transactions on Communications, vol. 8, no. 1, 1997.

[25] L. R. Ford, and D. R. Fulkerson, “Flows in Networks”, Princeton
University Press, 1962.

[26] D. P. Bertsekas, and J. N. Tsitsiklis “Parallel and Distributed Computa-
tion: Numerical Methods”, Athena Scientific, 1997.

[27] D. P. Bertsekas, “Network Optimization: Continuous and Discrete Mod-
els”, Athena Scientific, 1998.

[28] M. Stoer and F. Wagner, “A simple min-cut algorithm”, Journal of the
ACM, vol. 44, no. 4, 1997.

[29] R. Stoenescu, V. Olteanu, J. Martins, R. Bifulco, F. Huici, M. Ahmed, G.
Smaragdakis, M. Handley, and C. Raiciu, “In-Net: Enabling In-Network
Processing for the Masses”, in Proc. of ACM EuroSys, 2015.

[30] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. M. Maggs,
J. Rake, S. Uhlig, and R Weber, “Pushing CDN-ISP Collaboration to the
Limit”, ACM SIGCOMM CCR, vol. 43, no. 2, 2013.

[31] B. Kotnyek, “An Annotated Overview of Dynamic Network Flows”,
INRIA, Technical Report No 4936, 2003.

[32] Hewlett Packard, “HP Network Functions Virtualization (NFV)”, http:
//www8.hp.com/us/en/cloud/nfv-overview.html?, Nov. 2014.

[33] A. Ben-Tal, and A. Nemirovski, “Robust Solutions to Linear Pro-
gramming Problems Contaminated with Uncertain Data”, Mathematical
Programming, vo. 88, 2000, pp. 411-424.

[34] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better Never
than Late: Meeting Deadlines in Datacenter Networks”, in Proc. of ACM
SIGCOMM, 2011.

[35] F. Malandrino, C. Casetti, C. Chiasserini, and M. Fiore, “Optimal
Content Downloading in Vehicular Networks”, IEEE Trans. Mob. Comp.,
vol. 99, no. 1, 2013.

[36] S. Gitzenis, G. Konidaris, and S. Toumpis, “Flow optimization in delay
tolerant networks using dual decomposition”, in Proc. of WiOpt, 2012.

[37] N. Laoutaris, G. Smaragdakis, P. Rodriguez, and R. Sundaram, “Delay
Tolerant Bulk Data Transfers on the Internet”, in Proc. of ACM Sigmetrics,
2009.

[38] R. G. Ogier, “Minimum-Delay Routing in Continuous-Time Dynamic
Networks with Piecewise-Constant Capacities”, Networks, vol.18, 1988.

[39] A. Orda, R. Rom, and M. Sidi, “Minimum Delay Routing in Stochastic
Networks”, IEEE/ACM Trans. Networking, vol.1, no.2, 1993, pp.187-198.

[40] G. Carofiglio, M. Gallo, and L. Muscariello., “Bandwidth and storage
sharing performance in information centric networking”, in Proc. of ACM
SIGCOMM Workshop on ICN, 2011.

[41] M. Diallo, S. Fdida, V. Sourlas, P. Flegkas, and L. Tassiulas, “Leveraging
caching for internet-scale content-based publish/subscribe networks”, in
Proc. of IEEE ICC, 2011.

[42] K. Lee, H. Zhang, Z. Shao, M. Chen, A. Parekh and K. Ramchandran,
“An Optimized Distributed Video-on-Demand Streaming System: Theory
and Design”, in Proc. of 50th Allerton Conf., 2012.

[43] L. Tassiulas, and A. Ephremides, “Stability Properties of Constrained
Queueing Systems and Scheduling Policies for Maximum Throughput in

Multihop Radio Networks”, IEEE Trans. on Automatic Control, vol. 37,
no. 12, 1992, pp. 1936-1948.

[44] L. Georgiadis, M. J. Neely, L. Tassiulas, “Resource Allocation and
Cross-Layer Control in Wireless Networks”, Foundations and Trends in
Networking, vol. 1, no. 1, 2006.

[45] Level3 CDN, “http://www.level3.com/en/products-and-services/data-
and-internet/cdn-content-delivery-network”.

[46] AT&T News Release Archives, “Akamai and AT&T Forge Global
Strategic Alliance to Provide Content Delivery Network Solutions”, 2012.

[47] Akamai Press Release, “Swisscom and Akamai Enter Into a Strategic
Partnership”, March 2013.

[48] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
F. Huici, “ClickOS and the Art of Network Function Virtualization”, in
Proc. of USENIX, NSDI, 2014.

[49] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo, S. Shenker, “Rollback-
Recovery for Middleboxes”, in Proc. of ACM SIGCOMM, 2015.

George Iosifidis received a Diploma in telecom-
munications engineering from the Greek Air Force
Academy in 2000, and the M.S. and Ph.D. in electri-
cal engineering from University of Thessaly, in 2007
and 2012, respectively. He worked as a post-doctoral
researcher at CERTH, Greece, and Yale University,
USA. He is currently the Ussher Assistant Professor
in Future Networks with Trinity College Dublin,
and a Funded Investigator with CONNECT centre,
Ireland. His research interests lie in the broad area
of wireless networks and network economics.

Iordanis Koutsopoulos is Associate Professor with
the Department of Informatics, Athens University of
Economics and Business. He received the Diploma
degree in Electrical and Computer Engineering
from the National Technical University of Athens
(NTUA), Greece in 1997 and the M.S. and Ph.D. de-
grees in Electrical and Computer Engineering from
the University of Maryland, College Park (UMCP),
USA in 1999 and 2002 respectively. He has been
Assistant Professor with the Department of Infor-
matics of UEB (2013-2016), and Assistant Professor

(2010-2013) and Lecturer (2005-2010) with the Department of Computer
Engineering and Communications, University of Thessaly. He received the
single-investigator European Research Council (ERC) competition runner-up
award for the project “RECITAL: Resource Management for Self-coordinated
Autonomic Wireless Networks” (2012-2015). His research interests involve
network control and optimization in wireless networks, social and community
networks, crowd-sensing systems, smart-grid and cloud computing.

Georgios Smaragdakis is a Professor at TU Berlin
and a Researcher at the Massachusetts Institute of
Technology and Akamai Technologies. From 2008-
2014 he acted as Senior Researcher at Deutsche
Telekom Laboratories and at the Technical Univer-
sity of Berlin. In 2008 he was a research intern
at Telefonica Research. George earned the Ph.D.
degree in Computer Science from Boston University
in 2009 and the Diploma in Electronic and Computer
Engineering from the Technical University of Crete.
His research interests include the measurement, per-

formance analysis, and optimization of content distribution systems on the
Internet, as well as economic, peering, collaboration, and policy aspects of
content delivery, and Internet, Web, and content delivery analytics. George
has been awarded with a European Research Council Starting Grant Award
(2015), a Marie Curie International Outgoing Fellowship (2013), and best
paper awards at ACM IMC (2016 and 2011) and ACM CoNEXT (2015).

