949 research outputs found
Membrane Systems and Petri Net Synthesis
Automated synthesis from behavioural specifications is an attractive and
powerful way of constructing concurrent systems. Here we focus on the problem
of synthesising a membrane system from a behavioural specification given in the
form of a transition system which specifies the desired state space of the
system to be constructed. We demonstrate how a Petri net solution to this
problem, based on the notion of region of a transition system, yields a method
of automated synthesis of membrane systems from state spaces.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347
Quantitative Analysis of Opacity in Cloud Computing Systems
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Federated cloud systems increase the reliability and reduce the cost of the computational support.
The resulting combination of secure private clouds and less secure public clouds, together with the fact that resources need to be located within different clouds, strongly affects the information flow security of the entire system. In this paper, the clouds as well as entities of a federated cloud system are
assigned security levels, and a probabilistic flow sensitive security model for a federated cloud system is proposed. Then the notion of opacity --- a notion capturing the security of information flow ---
of a cloud computing systems is introduced, and different variants of quantitative analysis of opacity are presented. As a result, one can track the information flow in a cloud system, and analyze the impact of different resource allocation strategies by quantifying the corresponding opacity characteristics
Synthesising ENI-Systems with Interval Order Semantics
\ua9 2024 Copyright for this paper by its authors. Elementary net systems with inhibitor arcs are a class of fundamental Petri net models with very simple markings which are sets of places. Their standard semantics is based on sequences of executed transitions or, alternatively, as labelled total orders. In this paper, we introduce semantics based on interval (partial) orders which allows one to describe behaviours where transitions have non-atomic duration. For such a semantical model, we consider the net synthesis problem, and show that the standard notion of a region of transition system (providing input to the synthesis procedure) can still be applied after suitable modifications
Modeling biological systems with delays in Bio-PEPA
Delays in biological systems may be used to model events for which the
underlying dynamics cannot be precisely observed, or to provide abstraction of
some behavior of the system resulting more compact models. In this paper we
enrich the stochastic process algebra Bio-PEPA, with the possibility of
assigning delays to actions, yielding a new non-Markovian process algebra:
Bio-PEPAd. This is a conservative extension meaning that the original syntax of
Bio-PEPA is retained and the delay specification which can now be associated
with actions may be added to existing Bio-PEPA models. The semantics of the
firing of the actions with delays is the delay-as-duration approach, earlier
presented in papers on the stochastic simulation of biological systems with
delays. These semantics of the algebra are given in the Starting-Terminating
style, meaning that the state and the completion of an action are observed as
two separate events, as required by delays. Furthermore we outline how to
perform stochastic simulation of Bio-PEPAd systems and how to automatically
translate a Bio-PEPAd system into a set of Delay Differential Equations, the
deterministic framework for modeling of biological systems with delays. We end
the paper with two example models of biological systems with delays to
illustrate the approach.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
Report on the conference Hungarian Studies in Poland
Report on the conference Hungarian Studies in Poland. Poznań 17-18.11.2023
Measurable Stochastics for Brane Calculus
We give a stochastic extension of the Brane Calculus, along the lines of
recent work by Cardelli and Mardare. In this presentation, the semantics of a
Brane process is a measure of the stochastic distribution of possible
derivations. To this end, we first introduce a labelled transition system for
Brane Calculus, proving its adequacy w.r.t. the usual reduction semantics.
Then, brane systems are presented as Markov processes over the measurable space
generated by terms up-to syntactic congruence, and where the measures are
indexed by the actions of this new LTS. Finally, we provide a SOS presentation
of this stochastic semantics, which is compositional and syntax-driven.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
Nyelvében él a kor
The vocabulary of a language is constantly evolving, with new elements appearing and others passing out of usage, so it can reveal a lot about the time period in which it is studied as well as the worldview of its users. Through a study of Hungarian language usage, including words and expressions, some of the characteristics of the socialist era, the period after the regime change and of recent years can be illuminated. A comparison of them as well, as a comparison between an Internet survey of 10 years ago and a more recent one shows the changes in political, social, economic and cultural life, the multiplication of problems and the gloomy mood in Hungary
- …