304 research outputs found

    Reference Percentiles for Bioelectrical Phase Angle in Athletes

    Get PDF
    The present study aimed to develop reference values for bioelectrical phase angle in male and female athletes from different sports. Overall, 2224 subjects participated in this study [1658 males (age 26.2±8.9 y) and 566 females (age 26.9±6.6 y)]. Participants were categorized by their sport discipline and sorted into three different sport modalities: Endurance, velocity/power, and team sports. Phase angle was directly measured using a foot-to-hand bioimpedance technology at a 50 kHz frequency during the in-season period. Reference percentiles (5th, 15th, 50th, 85th, and 95th) were calculated and stratified by sex, sport discipline and modality using an empirical Bayesian analysis. This method allows for the sharing of information between different groups, creating reference percentiles, even for sports disciplines with few observations. Phase angle differed (men: P<0.001; women: P=0.003) among the three sport modalities, where endurance athletes showed a lower value than the other groups (men: Vs. velocity/power: P=0.010, 95% CI=−0.43 to −0.04; vs. team sports: P < 0.001, 95% CI=−0.48 to −0.02; women: Vs. velocity/power: P=0.002, 95% CI=−0.59 to −0.10; vs. team sports: P=0.015, 95% CI=−0.52 to−0.04). Male athletes showed a higher phase angle than female athletes within each sport modality (endurance: p<0.01, 95% CI=0.63 to 1.14; velocity/power: P<0.01, 95% CI=0.68 to 1.07; team sports: P<0.01, 95% CI=0.98 to 1.23). We derived phase angle reference percentiles for endurance, velocity/power, and team sports athletes. Additionally, we calculated sex-specific references for a total of 22 and 19 sport disciplines for male and female athletes, respectively. This study provides sex and sport-specific percentiles for phase angle that can track body composition and performance-related parameters in athletes

    Bayesian inference in genetic parameter estimation of visual scores in Nellore beef-cattle

    Get PDF
    The aim of this study was to estimate the components of variance and genetic parameters for the visual scores which constitute the Morphological Evaluation System (MES), such as body structure (S), precocity (P) and musculature (M) in Nellore beef-cattle at the weaning and yearling stages, by using threshold Bayesian models. The information used for this was gleaned from visual scores of 5,407 animals evaluated at the weaning and 2,649 at the yearling stages. The genetic parameters for visual score traits were estimated through two-trait analysis, using the threshold animal model, with Bayesian statistics methodology and MTGSAM (Multiple Trait Gibbs Sampler for Animal Models) threshold software. Heritability estimates for S, P and M were 0.68, 0.65 and 0.62 (at weaning) and 0.44, 0.38 and 0.32 (at the yearling stage), respectively. Heritability estimates for S, P and M were found to be high, and so it is expected that these traits should respond favorably to direct selection. The visual scores evaluated at the weaning and yearling stages might be used in the composition of new selection indexes, as they presented sufficient genetic variability to promote genetic progress in such morphological traits

    Trauma Hemorrhagic Shock-Induced Lung Injury Involves a Gut-Lymph-Induced TLR4 Pathway in Mice

    Get PDF
    Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI) and multiple organ dysfunction syndrome (MODS). Since Toll-like receptors (TLR) act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R) injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS) mediate gut-induced lung injury via TLR4 activation.The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT) mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD) lung permeability and myeloperoxidase (MPO) levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation

    Quantitative Analysis of Mechanisms That Govern Red Blood Cell Age Structure and Dynamics during Anaemia

    Get PDF
    Mathematical modelling has proven an important tool in elucidating and quantifying mechanisms that govern the age structure and population dynamics of red blood cells (RBCs). Here we synthesise ideas from previous experimental data and the mathematical modelling literature with new data in order to test hypotheses and generate new predictions about these mechanisms. The result is a set of competing hypotheses about three intrinsic mechanisms: the feedback from circulating RBC concentration to production rate of immature RBCs (reticulocytes) in bone marrow, the release of reticulocytes from bone marrow into the circulation, and their subsequent ageing and clearance. In addition we examine two mechanisms specific to our experimental system: the effect of phenylhydrazine (PHZ) and blood sampling on RBC dynamics. We performed a set of experiments to quantify the dynamics of reticulocyte proportion, RBC concentration, and erythropoietin concentration in PHZ-induced anaemic mice. By quantifying experimental error we are able to fit and assess each hypothesis against our data and recover parameter estimates using Markov chain Monte Carlo based Bayesian inference. We find that, under normal conditions, about 3% of reticulocytes are released early from bone marrow and upon maturation all cells are released immediately. In the circulation, RBCs undergo random clearance but have a maximum lifespan of about 50 days. Under anaemic conditions reticulocyte production rate is linearly correlated with the difference between normal and anaemic RBC concentrations, and their release rate is exponentially correlated with the same. PHZ appears to age rather than kill RBCs, and younger RBCs are affected more than older RBCs. Blood sampling caused short aperiodic spikes in the proportion of reticulocytes which appear to have a different developmental pathway than normal reticulocytes. We also provide evidence of large diurnal oscillations in serum erythropoietin levels during anaemia

    Acute Multiple Organ Failure in Adult Mice Deleted for the Developmental Regulator Wt1

    Get PDF
    There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal–epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover

    Neonatal erythropoiesis and subsequent anemia in HIV-positive and HIV-negative Zimbabwean babies during the first year of life: a longitudinal study

    Get PDF
    BACKGROUND: Anemia is common in HIV infection and independently associated with disease progression and mortality. The pathophysiology of HIV-related anemia is not well understood especially in infancy. METHODS: We conducted a longitudinal cohort study nested within the Zimbabwe Vitamin A for Mothers and Babies Project. We measured hemoglobin, erythropoietin (EPO), serum transferrin receptor (TfR) and serum ferritin at 6 weeks, 3 and 6 months of age and hemoglobin at 9 and 12 months in 3 groups of randomly selected infants: 136 born to HIV-negative mothers, and 99 born to HIV-positive mothers and who were infected themselves by 6 weeks of age, and 324 born to HIV-positive mothers but who did not become infected in the 6 months following birth. RESULTS: At one year of age, HIV-positive infants were 5.26 (adjusted odds ratio, P < 0.001) times more likely to be anemic compared to HIV-negative infants. Among, HIV-negative infants, EPO was or tended to be inversely associated with hemoglobin and was significantly positively associated with TfR throughout the first 6 months of life; TfR was significantly inversely associated with ferritin at 6 months; and EPO explained more of the variability in TfR than did ferritin. Among infected infants, the inverse association of EPO to hemoglobin was attenuated during early infancy, but significant at 6 months. Similar to HIV-negative infants, EPO was significantly positively associated with TfR throughout the first 6 months of life. However, the inverse association between TfR and ferritin observed among HIV-negative infants at 6 months was not observed among infected infants. Between birth and 6 months, mean serum ferritin concentration declined sharply (by ~90%) in all three groups of babies, but was significantly higher among HIV-positive compared to HIV-negative babies at all time points. CONCLUSION: HIV strongly increases anemia risk and confounds interpretation of hematologic indicators in infants. Among HIV-infected infants, the EPO response to anemia is attenuated near the time of infection in the first weeks of life, but normalizes by 6 months

    Sox6 Is Necessary for Efficient Erythropoiesis in Adult Mice under Physiological and Anemia-Induced Stress Conditions

    Get PDF
    BACKGROUND: Definitive erythropoiesis is a vital process throughout life. Both its basal activity under physiological conditions and its increased activity under anemia-induced stress conditions are highly stimulated by the hormone erythropoietin. The transcription factor Sox6 was previously shown to enhance fetal erythropoiesis together and beyond erythropoietin signaling, but its importance in adulthood and mechanisms of action remain unknown. We used here Sox6 conditional null mice and molecular assays to address these questions. METHODOLOGY/PRINCIPAL FINDINGS: Sox6fl/flErGFPCre adult mice, which lacked Sox6 in erythroid cells, exhibited compensated anemia, erythroid cell developmental defects, and anisocytotic, short-lived red cells under physiological conditions, proving that Sox6 promotes basal erythropoiesis. Tamoxifen treatment of Sox6fl/flCaggCreER mice induced widespread inactivation of Sox6 in a timely controlled manner and resulted in erythroblast defects before reticulocytosis, demonstrating that impaired erythropoiesis is a primary cause rather than consequence of anemia in the absence of Sox6. Twenty five percent of Sox6fl/flErGFPCre mice died 4 or 5 days after induction of acute anemia with phenylhydrazine. The others recovered slowly. They promptly increased their erythropoietin level and amplified their erythroid progenitor pool, but then exhibited severe erythroblast and reticulocyte defects. Sox6 is thus essential in the maturation phase of stress erythropoiesis that follows the erythropoietin-dependent amplification phase. Sox6 inactivation resulted in upregulation of embryonic globin genes, but embryonic globin chains remained scarce and apparently inconsequential. Sox6 inactivation also resulted in downregulation of erythroid terminal markers, including the Bcl2l1 gene for the anti-apoptotic factor Bcl-xL, and in vitro assays indicated that Sox6 directly upregulates Bcl2l1 downstream of and beyond erythropoietin signaling. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that Sox6 is necessary for efficient erythropoiesis in adult mice under both basal and stress conditions. It is primarily involved in enhancing the survival rate and maturation process of erythroid cells and acts at least in part by upregulating Bcl2l1
    • …
    corecore