12 research outputs found
Large-Scale Surface Mass Balance of Ice Sheets from a Comprehensive Atmospheric Model
The surface mass balance for Greenland and Antarctica has been calculated using model data from an AMIP-type experiment for the period 1979-2001 using the ECHAM5 spectral transform model at different triangular truncations. There is a significant reduction in the calculated ablation for the highest model resolution, T319 with an equivalent grid distance of ca 40km. As a consequence the T319 model has a positive surface mass balance for both ice sheets during the period. For Greenland, the models at lower resolution, T106 and T63, on the other hand, have a much stronger ablation leading to a negative surface mass balance. Calculations have also been undertaken for a climate change experiment using the IPCC scenario A1B, with a T213 resolution (corresponding to a grid distance of some 60km) and comparing two 30-year periods from the end of the twentieth century and the end of the twenty-first century, respectively. For Greenland there is change of 495km3/year, going from a positive to a negative surface mass balance corresponding to a sea level rise of 1.4mm/year. For Antarctica there is an increase in the positive surface mass balance of 285km3/year corresponding to a sea level fall by 0.8mm/year. The surface mass balance changes of the two ice sheets lead to a sea level rise of 7cm at the end of this century compared to end of the twentieth century. Other possible mass losses such as due to changes in the calving of icebergs are not considered. It appears that such changes must increase significantly, and several times more than the surface mass balance changes, if the ice sheets are to make a major contribution to sea level rise this century. The model calculations indicate large inter-annual variations in all relevant parameters making it impossible to identify robust trends from the examined periods at the end of the twentieth century. The calculated inter-annual variations are similar in magnitude to observations. The 30-year trend in SMB at the end of the twenty-first century is significant. The increase in precipitation on the ice sheets follows closely the Clausius-Clapeyron relation and is the main reason for the increase in the surface mass balance of Antarctica. On Greenland precipitation in the form of snow is gradually starting to decrease and cannot compensate for the increase in ablation. Another factor is the proportionally higher temperature increase on Greenland leading to a larger ablation. It follows that a modest increase in temperature will not be sufficient to compensate for the increase in accumulation, but this will change when temperature increases go beyond any critical limit. Calculations show that such a limit for Greenland might well be passed during this century. For Antarctica this will take much longer and probably well into following centurie
Interannual variability in tropospheric ozone and its precursors:a modeling study constrained by long-term ground-based and satellite observations
Tropospheric ozone (O3) is a harmful pollutant and an increasingly important green-house gas. Tropospheric O3 distributions are determined by complex and non-linear interactions between photochemistry and transport processes. The first objective of this thesis is to examine the factors that contribute to the interannual variation (IAV) of tropospheric O3 and related compounds, such as carbon monoxide (CO), for a period of 19 years (1987-2005), with a focus over the northern mid-latitudes. A series of long-term measurements, including ozonesondes, groud-based sites and satellites, are interpreted with a global chemical-transport model (GEOS-Chem) and a number of sensitivity simulations are performed to quantitatively assess the relative contribution of individual processes to the IAV of O3 and CO. We first assess the capability of the model to reproduce O3 and CO IAV. We find that the model is able to reproduce reasonably well many of the observed features of the O3 and CO IAV. The model however, fails to reproduce the observed variation in O3 in the northern mid-latitudes during the first half of the 1990s (negative anomaly in 1991-1993 followed by an upward trend in 1993-1996) which is likely due to an inadequate representation of stratospheric dynamics and stratospheric O3 concentrations in the model. This study has demonstrated that the principal drivers of O3 and CO IAV are meteorology and emissions. We examine in particular the 1998-1999 period. A large anomaly in O3 was observed at several sites over Europe and is fairly well reproduced by the model. Different processes are found to contribute to this long-lasting anomaly. The first period (spring 1998) was largely influenced by the strong preceding El Niño episode of 1997. El Niño Southern Oscillation (ENSO) affects the stratosphere-troposphere exchange (STE) and the Asian pollution export, through a change in convective activity and a strengthening of the subtropical jet. North American pollution export was also enhanced through an increase in temperature and in photochemical activity. During the second period (summer-fall 1998), the O3 budget over Europe was influenced by both boreal wildfires and Asian pollution. Finally, the O3 anomaly during the third period (spring 1999) was affected by enhanced biomass burning emissions in Southeast Asia. We further noticed that a significant correlation exists between the Southern Oscillation Index (SO1) in fall and the European tropospheric O3 column in the following spring (R= -0.65, N=19), throughout the period from 1987 to 2005. In other words, increasing tropospheric O3 column is seen over Europe the following spring of an El Niño year. In the second part of this thesis, we used inversion methods to derive monthly NOx, emissions from GOME and SCIAMACHY space-based retrievals of nitrogen dioxide (NO2) columns for a period of 10 years (1996-2005). We calculated emission trends over the highly industrialized regions and large cities around the globe. Decreasing emissions were found in the U.S. and Europe. However, negligible or even positive trends were seen in urban areas in northeastern U.S. (e.g. Boston) and southern Europe (e.g. Lisbon, Istanbul) which are most probably due to increasing motor vehicle NOx, emissions. Furthermore, a slowdown in the decreasing trend in NOx, combustion fuel emissions over North Europe has been noticed after 2000 and especially in 2003-2004. This is probably related to a slowdown in the decrease in road transport emissions. Increasing trends, on the other hand, have been found in the combustion fuel NOx, emissions over east China (8.3% year-1), due to the fast industrial and economical development of China. In addition, we found an upward trend in soil NOx, emissions which may be related to the increasing use of fertilizers in the northeastern part of the country. Finally, we examined the influence of using two different retrievals of NO2 columns on the resulting a posteriori inventories. The inversion was carried out twice for the year 2000, using two different retrievals, one from Dalhouse/SAO and one from BIRA/KNMI. The two resulting inventories were found to correspond well globally, but show important differences (more than 60%) at specific times and regions
Can a global model reproduce observed trends in summertime surface ozone levels?
Quantifying trends in surface ozone concentrations is critical for assessing pollution control strategies. Here we use observations and results from a global chemical transport model to examine the trends (1991â2005) in daily maximum 8-h average concentrations in summertime surface ozone at rural sites in Europe and the United States (US). We find a decrease in observed ozone concentrations at the high end of the probability distribution at many of the sites in both regions. The model attributes these trends to a decrease in local anthropogenic ozone precursors, although simulated decreasing trends are overestimated in comparison with observed ones. The low end of observed distribution show small upward trends over Europe and the western US and downward trends in Eastern US. The model cannot reproduce these observed trends, especially over Europe and the western US. In particular, simulated changes between the low and high end of the distributions in these two regions are not significant. Sensitivity simulations indicate that emissions from far away source regions do not affect significantly summer ozone trends at both ends of the distribution in both Europe and US. Possible reasons for discrepancies between observed and simulated trends are discussed.ISSN:1680-7375ISSN:1680-736
Recommended from our members
Large-scale surface mass balance of ice sheets from a comprehensive atmospheric model
The surface mass balance for Greenland and Antarctica has been calculated using model data from an AMIP-type experiment for the period 1979â2001 using the ECHAM5 spectral transform model at different triangular truncations. There is a significant reduction in the calculated ablation for the highest model resolution, T319 with an equivalent grid distance of ca 40 km. As a consequence the T319 model has a positive surface mass balance for both ice sheets during the period. For Greenland, the models at lower resolution, T106 and T63, on the other hand, have a much stronger ablation leading to a negative surface mass balance. Calculations have also been undertaken for a climate change experiment using the IPCC scenario A1B, with a T213 resolution (corresponding to a grid distance of some 60 km) and comparing two 30-year periods from the end of the twentieth century and the end of the twenty-first century, respectively. For Greenland there is change of 495 km3/year, going from a positive to a negative surface mass balance corresponding to a sea level rise of 1.4 mm/year. For Antarctica there is an increase in the positive surface mass balance of 285 km3/year corresponding to a sea level fall by 0.8 mm/year. The surface mass balance changes of the two ice sheets lead to a sea level rise of 7 cm at the end of this century compared to end of the twentieth century. Other possible mass losses such as due to changes in the calving of icebergs are not considered. It appears that such changes must increase significantly, and several times more than the surface mass balance changes, if the ice sheets are to make a major contribution to sea level rise this century. The model calculations indicate large inter-annual variations in all relevant parameters making it impossible to identify robust trends from the examined periods at the end of the twentieth century. The calculated inter-annual variations are similar in magnitude to observations. The 30-year trend in SMB at the end of the twenty-first century is significant. The increase in precipitation on the ice sheets follows closely the Clausius-Clapeyron relation and is the main reason for the increase in the surface mass balance of Antarctica. On Greenland precipitation in the form of snow is gradually starting to decrease and cannot compensate for the increase in ablation. Another factor is the proportionally higher temperature increase on Greenland leading to a larger ablation. It follows that a modest increase in temperature will not be sufficient to compensate for the increase in accumulation, but this will change when temperature increases go beyond any critical limit. Calculations show that such a limit for Greenland might well be passed during this century. For Antarctica this will take much longer and probably well into following centuries
Recommended from our members
The changing energy balance of the polar regions in a warmer climate
Energy fluxes for polar regions are examined for two 30-year periods, representing the end of the 20th and 21st centuries, using data from high resolution simulations with the ECHAM5 climate model. The net radiation to space for the present climate agrees well with data from the Clouds and the Earthâs Radiant Energy System (CERES) over the northern polar region but shows an underestimation in planetary albedo for the southern polar region. This suggests there are systematic errors in the atmospheric circulation or in the net surface energy fluxes in the southern polar region. The simulation of the future climate is based on the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The total energy transport is broadly the same for the two 30 year periods, but there is an increase in the moist energy transport of the order of 6 W mâ2 and a corresponding reduction in the dry static energy. For the southern polar region the proportion of moist energy transport is larger and the dry static energy correspondingly smaller for both periods.
The results suggest a possible mechanism for the warming of the Arctic that is discussed. Changes between the 20th and 21st centuries in the northern polar region show the net ocean surface radiation flux in summer increases ~18W mâ2 (24%). For the southern polar region the response is different as there is a decrease in surface solar radiation. We suggest that this is caused by changes in cloudiness associated with the poleward migration of the storm tracks
Modelling the effect of size on the aerial dispersal of microorganisms
Aim We investigate the long-standing question of whether the small size of microbes allows most microbial species to colonize all suitable sites around the globe or whether their ranges are limited by opportunities for dispersal. In this study we use a modelling approach to investigate the effect of size on the probability of between-continent dispersal using virtual microorganisms in a global model of the Earths atmosphere
Towards Understanding the Climate of VenusApplications of Terrestrial Models to Our Sister Planet /
VIII, 185 p. 72 illus., 37 illus. in color.onlin
Towards Understanding the Climate of Venus: Applications of Terrestrial Models to Our Sister Planet
ESAâs Venus Express Mission has monitored Venus since April 2006, and scientists worldwide have used mathematical models to investigate its atmosphere and model its circulation. This book summarizes recent work to explore and understand the climate of the planet through a research program under the auspices of the International Space Science Institute (ISSI) in Bern, Switzerland. Some of the unique elements that are discussed are the anomalies with Venusâ surface temperature (the huge greenhouse effect causes the surface to rise to 460°C, without which would plummet as low as -40°C), its unusual lack of solar radiation (despite being closer to the Sun, Venus receives less solar radiation than Earth due to its dense cloud cover reflecting 76% back) and the juxtaposition of its atmosphere and planetary rotation (wind speeds can climb up to 200 m/s, much faster than Venusâ sidereal day of 243 Earth-days)