78 research outputs found

    In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The aim of this study was to investigate <it>in vitro </it>the cytotoxicity and antibacterial properties of four different endodontic sealers using human periodontal ligament fibroblast cell proliferation and visual analysis of growth inhibition.</p> <p>Methods</p> <p>A silicone (GuttaFlow), silicate (EndoSequence BC), zinc oxide eugenol (Pulp Canal Sealer EWT) and epoxy resin (AH Plus Jet) based sealer were incubated with PDL fibroblasts (10<sup>4 </sup>cells/ml, n = 6) up to 96 h. Cell proliferation (RFU) was determined by means of the Alamar Blue assay. Cell growth and morphology was visualized by means of fluorescent dyes. Possible antibacterial properties of the different sealers were visualized by means of SEM (<it>Enterococcus faecalis; Parvimonas micra</it>).</p> <p>Results</p> <p>Fibroblast proliferation depended on sealer and cultivation time. After 72 and 96 h GuttaFlow and EndoSequence BC showed relatively non-cytotoxic reactions, while Pulp Canal Sealer EWT and AH Plus Jet caused a significant decrease of cell proliferation (p < 0.001). Visualization of cell growth and morphology with various fluorescent dyes supplemented the results. No antibacterial effect of EndoSequence BC to <it>P. micra </it>was found, whereas GuttaFlow showed a weak, Pulp Canal Sealer EWT and AH Plus Jet extensive growth inhibition. Also, no antibacterial effect of GuttaFlow, EndoSequence BC or AH Plus Jet to <it>E. faecalis </it>could be detected.</p> <p>Conclusions</p> <p>These <it>in vitro </it>findings reveal that GuttaFlow and EndoSequence BC can be considered as biocompatible sealing materials. However, prior to their clinical employment, studies regarding their sealing properties also need to be considered.</p

    In vitro evaluation of the cytotoxicity of ProRoot MTA and MTA Angelus

    No full text

    Bonding of composite to base materials: Effects of adhesive treatments on base surface properties and bond strength

    No full text
    Purpose: To evaluate the effects on the surface properties (morphology, roughness, microhardness, composition) and bond strength to composite of four types of base cements (Equia-Fil/EQF, Angelus white MTA/MTA, Biodentin/ BDN and IRM/IRM) when treated with phosphoric acid etching (PAE) or two self-etch adhesives (Select One Prime &amp;amp; Bond and Clearfil S3 Bond). Materials and Methods: Disk-shaped specimens were prepared and stored until complete setting. The surfaces before and after treatments were examined by stereomicroscopy, optical profilometry, ATR-FTIR, and LV-SEM/EDX. Interfacial bond strength with composite was evaluated under shear loading (SBS) using a conventional bonding resin (Heliobond) on silane treated (SIL) specimens as a reference. Failure mode was evaluated using stereomicroscopy. Results: PAE induced compositional changes on MTA and BDN, forming a phosphate-rich surface layer, probably composed of Ca-P salts. Dissolution of the amorphous cement fractions was evident in all materials. SPB and CSB did not show remarkable changes apart from an increase in Si content on MTA. On all bases, PAE resulted in the highest values for most of the roughness parameters. SPB and CSB showed lower or equal average roughness (Sa) and percentage of additional surface area contributed by the texture (Sdr) compared to the control in MTA and EQL. In terms of SBS, the highest β (Weibull shape parameter) in MPa were MTA-SIL = 5.79, BDN-PAE = 3.67, and MTA-PAE = 3.46, whereas the highest α (Weibull scale parameter) were EQF-CSB = 9.08, BDN-PAE = 5.13, and BDN-SIL = 4.67. Adhesive failures with less than 20% of the bonding area were encountered in IRM-PAE and SIL, EQF-CBS and MTA-SIL. Conclusion: Each base material requires a different procedure for optimal bonding with composite. Phosphoric acid etching and application of the conventional bonding resin Heliobond is the preferred procedure for composite bonding to MTA, BDN, IRM, but for composite bonding to CSB for EQF, the mild self-etch adhesive is preferable. © Quintessenz

    Effect of Silica Nanoparticles Silanized by Functional/Functional or Functional/Non-Functional Silanes on the Physicochemical and Mechanical Properties of Dental Nanocomposite Resins

    No full text
    Dental nanocomposite resins have been proposed as potential restorative materials that are inevitably challenged with dynamic oral conditions. This investigation focused on the contribution of miscellaneous silane blends, used as coupling agents, to the ultimate performance of dental nanocomposite dimethacrylate resins. Herein, silica nanoparticles were initially silanized with functional/functional or functional/non-fuctional silane mixtures (50/50 wt/wt). Fourier transforms infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) verified the modification of nanosilica. The organomodified nanoparticles were then inserted into Bis-GMA/TEGDMA based resins by hand spatulation process. Scanning electron microscopy (SEM) findings revealed a broad distribution of fillers in the polymer network when reactive silanes and their corresponding blends were used. Furthermore, optical profilometry results showed that the presence of functional/non-functional mixtures can produce relatively smooth composite surfaces. Polymerization shrinkage was found to be limited upon the decrease of the degree of conversion regarding all the tested silane mixtures. The functional/functional silane blend assured the highest flexural properties and the lowest solubility after the storage of the nanocomposite in water for 1 week at 37 &deg;C. The above experimental data could contribute to the proper designing of dental nanocomposite resins which may fit the modern clinical applications

    Effect of soil characteristics on shear strength of sands

    No full text
    The paper presents the results of a laboratory investigation into the influence of (a) mineral composition and angularity of sand grains and (b) fines type and content on the strength parameters of sandy soils tested at various densities and normal stresses in a direct shear apparatus under drained conditions. © 2018, Springer Nature Switzerland AG

    The Influence of Topical Fluoride Application on Colour Stability of Aesthetic Fluoride-Releasing Restorative Materials

    No full text
    Fluoride-releasing restorative materials are often combined with topical fluoride application products in order to enhance fluoride effects. The purpose of this study was to determine the colour stability of 3 aesthetic fluoride-releasing restorative materials after application of 2 topical fluoride products. 15 disc shaped specimens were prepared for each restorative material and were divided into 3 groups. Topical fluorides were applied onto the specimens according to the manufacturer’s instructions. The procedure of fluoride application was repeated twice. Colour properties of all specimens were evaluated at baseline and 48 hours after topical fluoride application. Colour analysis was performed using the spectrophotometer and CIE L*a*b* method. 3 consecutive readings were recorded for each specimen and L*, a*, b* parameters and a mean number of readings were calculated

    Synthesis of Novel Dental Nanocomposite Resins by Incorporating Polymerizable, Quaternary Ammonium Silane-Modified Silica Nanoparticles

    No full text
    Diverse approaches dealing with the reinforcement of dental composite resins with quaternary ammonium compounds (QAC) have been previously reported. This work aims to investigate the physicochemical and mechanical performance of dental resins containing silica nanofillers with novel QAC. Different types of quaternary ammonium silane compounds (QASiC) were initially synthesized and characterized with proton nuclear magnetic resonance (1H-NMR) and Fourier transform infrared (FTIR) spectroscopy. Silica nanoparticles were surface modified with the above QASiC and the structure of silanized products (S.QASiC) was confirmed by means of FTIR and thermogravimetric analysis. The obtained S.QASiC were then incorporated into methacrylate based dental resins. Scanning electron microscopy images revealed a satisfactory dispersion of silica nanoclusters for most of the synthesized nanocomposites. Curing kinetics disclosed a rise in both the autoacceleration effect and degree of conversion mainly induced by shorter QASiC molecules. Polymerization shrinkage was found to be influenced by the particular type of S.QASiC. The flexural modulus and strength of composites were increased by 74% and 19%, while their compressive strength enhancement reached up to 19% by adding 22 wt% S.QASiC nanoparticles. These findings might contribute to the proper design of multifunctional dental materials able to meet the contemporary challenges in clinical practice
    corecore