13 research outputs found

    Noise and nonlinearities in high-throughput data

    Full text link
    High-throughput data analyses are becoming common in biology, communications, economics and sociology. The vast amounts of data are usually represented in the form of matrices and can be considered as knowledge networks. Spectra-based approaches have proved useful in extracting hidden information within such networks and for estimating missing data, but these methods are based essentially on linear assumptions. The physical models of matching, when applicable, often suggest non-linear mechanisms, that may sometimes be identified as noise. The use of non-linear models in data analysis, however, may require the introduction of many parameters, which lowers the statistical weight of the model. According to the quality of data, a simpler linear analysis may be more convenient than more complex approaches. In this paper, we show how a simple non-parametric Bayesian model may be used to explore the role of non-linearities and noise in synthetic and experimental data sets.Comment: 12 pages, 3 figure

    The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals.

    No full text
    Agrobacterium tumefaciens causes neoplastic growth in plants by transferring a piece of DNA, called T-DNA, into the nucleus of the plant cell. The virulence protein VirD2 of A. tumefaciens is tightly linked to the T-DNA and is thought to direct it to the plant genome. Here we show that the VirD2 protein contains two nuclear localization signals that are functional both in yeast and in plant cells. One signal is located in the N-terminal part of the protein and resembles a single-cluster-type nuclear localization signal. The second signal is near the C terminus and is a bipartite-type nuclear localization signal. The involvement of these sequences in the entry of the T-DNA into the nucleus is discussed

    Agrobacterium -mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems

    No full text
    A concise T-DNA element was engineered containing the rice class-I chitinase gene expressed under the control of CaMV35S and the hygromycin phosphotransferase gene (hph) as a selectable marker. The binary plasmid vector pNO1 with the T-DNA element containing these genes of interest was mobilized to Agrobacteriumtumefaciens strain LBA4404 to act as an efficient donor of T-DNA in the transformation of three different indica rice cultivars from different ecosystems. Many morphologically normal, fertile transgenic plants from these rice cultivars were generated after Agrobacterium-mediated transformation using 3-week-old scutella calli as initial explants. Stable integration, inheritance and expression of the chimeric chitinase gene were demonstrated by Southern blot and Western blot analysis of the transformants. Bioassay data showed that transgenic plants can restrict the growth of the sheath blight pathogen Rhizoctonia solani. Bioassay results were correlated with the molecular analysis. Although we obtained similar results upon DNA-mediated transformation, this report shows the potential of the cost-effective, simple Agrobacterium system for genetic manipulation of rice cultivars with a pathogenesis-related (PR) gene

    T-DNA transfer to maize cells: histochemical investigation of beta-glucuronidase activity in maize tissues.

    No full text
    Agrobacterium tumefaciens is routinely used to engineer desirable genes into dicotyledonous plants. However, the economically important graminaceous plant maize is refractory to tumor induction by inoculation with virulent strains of A. tumefaciens. Currently, the only clearcut evidence for transferred DNA (T-DNA) transport from Agrobacterium to maize comes from agroinfection. To study T-DNA transfer from Agrobacterium to maize cells in a virus-free system, we used here the beta-glucuronidase (GUS; EC 3.2.1.31) gene as a marker. GUS expression was observed with high efficiency on shoots of young maize seedlings after cocultivation with Agrobacterium carrying the GUS gene. Agrobacterium virulence mutants, incapable of transferring T-DNA to dicot tissue, were shown to be deficient in eliciting GUS expression in maize. Hence, expression of the T-DNA-located GUS gene in maize cells is strictly dependent on Agrobacterium-mediated DNA transfer. Histochemical staining of maize shoots revealed GUS expression located mainly in the leaves and the coleoptile

    Genetic analysis of the virD operon of Agrobacterium tumefaciens: a search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration.

    No full text
    The transferred DNA (T-DNA) is transported from Agrobacterium tumefaciens to the nucleus and is stably integrated into the genome of many plant species. It has been proposed that the VirD2 protein, tightly attached to the T-DNA, pilots the T-DNA into the plant cell nucleus and that it is involved in integration. Using agroinfection and beta-glucuronidase expression as two different very sensitive transient assays for T-DNA transfer, together with assays for stable integration, we have shown that the C-terminal half of the VirD2 protein and the VirD3 protein are not involved in T-DNA integration. However, the bipartite nuclear localization signal, which is located within the C terminus of the VirD2 protein and which has previously been shown to be able to target a foreign protein into the plant cell nucleus, was shown to be required for efficient T-DNA transfer. virD4 mutants were shown by agroinfection to be completely inactive in T-DNA transfer
    corecore