9 research outputs found
The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction
Purpose: Neurodevelopmental disorders (NDD) caused by protein
phosphatase 2A (PP2A) dysfunction have mainly been associated
with de novo variants in PPP2R5D and PPP2CA, and more rarely in
PPP2R1A. Here, we aimed to better understand the latter by
characterizing 30 individuals with de novo and often recurrent
variants in this PP2A scaffolding Aα subunit.
Methods: Most cases were identified through routine clinical
diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits.
Results: We describe 30 individuals with 16 different variants in
PPP2R1A, 21 of whom had variants not previously reported. The severity
of developmental delay ranged from mild learning problems to severe
intellectual disability (ID) with or without epilepsy. Common features
were language delay, hypotonia, and hypermobile joints. Macrocephaly
was only seen in individuals without B55α subunit-binding deficit, and
these patients had less severe ID and no seizures. Biochemically more
disruptive variants with impaired B55α but increased striatin binding
were associated with profound ID, epilepsy, corpus callosum hypoplasia,
and sometimes microcephaly.
Conclusion: We significantly expand the phenotypic spectrum of
PPP2R1A-related NDD, revealing a broader clinical presentation of the
patients and that the functional consequences of the variants are more
diverse than previously reported
Recommended from our members
Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers.
The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers
Implementation of a Multicenter Biobanking Collaboration for Next-Generation Sequencing-Based Biomarker Discovery Based on Fresh Frozen Pretreatment Tumor Tissue Biopsies
BACKGROUND: The discovery of novel biomarkers that predict treatment response in advanced cancer patients requires acquisition of high-quality tumor samples. As cancer evolves over time, tissue is ideally obtained before the start of each treatment. Preferably, samples are freshly frozen to allow analysis by next-generation DNA/RNA sequencing (NGS) but also for making other emerging systematic techniques such as proteomics and metabolomics possible. Here, we describe the first 469 image-guided biopsies collected in a large collaboration in The Netherlands (Center for Personalized Cancer Treatment) and show the utility of these specimens for NGS analysis. PATIENTS AND METHODS: Image-guided tumor biopsies were performed in advanced cancer patients. Samples were fresh frozen, vital tumor cellularity was estimated, and DNA was isolated after macrodissection of tumor-rich areas. Safety of the image-guided biopsy procedures was assessed by reporting of serious adverse events within 14 days after the biopsy procedure. RESULTS: Biopsy procedures were generally well tolerated. Major complications occurred in 2.1%, most frequently consisting of pain. In 7.3% of the percutaneous lung biopsies, pneumothorax requiring drainage occurred. The majority of samples (81%) contained a vital tumor percentage of at least 30%, from which at least 500 ng DNA could be isolated in 91%. Given our preset criteria, 74% of samples were of sufficient quality for biomarker discovery. The NGS results in this cohort were in line with those in other groups. CONCLUSION: Image-guided biopsy procedures for biomarker discovery to enable personalized cancer treatment are safe and feasible and yield a highly valuable biobank. The Oncologist 2017;22:33-40Implications for Practice: This study shows that it is safe to perform image-guided biopsy procedures to obtain fresh frozen tumor samples and that it is feasible to use these biopsies for biomarker discovery purposes in a Dutch multicenter collaboration. From the majority of the samples, sufficient DNA could be yielded to perform next-generation sequencing. These results indicate that the way is paved for consortia to prospectively collect fresh frozen tumor tissue
The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction
Purpose: Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit. Methods: Most cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits. Results: We describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay ranged from mild learning problems to severe intellectual disability (ID) with or without epilepsy. Common features were language delay, hypotonia, and hypermobile joints. Macrocephaly was only seen in individuals without B55α subunit-binding deficit, and these patients had less severe ID and no seizures. Biochemically more disruptive variants with impaired B55α but increased striatin binding were associated with profound ID, epilepsy, corpus callosum hypoplasia, and sometimes microcephaly. Conclusion: We significantly expand the phenotypic spectrum of PPP2R1A-related NDD, revealing a broader clinical presentation of the patients and that the functional consequences of the variants are more diverse than previously reported
Developmental epileptic encephalopathy in DLG4‐related synaptopathy
Objective: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. Methods: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. Results: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. Significance: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG