45 research outputs found

    Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution

    Get PDF
    Surface redox activities, oxygen evolution reaction (OER), oxidation of formic acid (FA), and anodic stability were investigated and compared for IrO2 electrodes prepared by two techniques: the thermal decomposition of H2IrCl6 precursor (TDIROF) and the anodic oxidation of metallic iridium (AIROF). Surface redox activities involved on the AIROF were found to be much faster than those involved on the TDIROF. Concerning the oxygen evolution reaction, both films show a similar mechanism and specific electrocatalytic activities. The situation seems to be different for FA oxidation. In fact, on TDIROF, the oxidation of FA and the OER compete involving the same surface redox couple Ir(VI)/Ir(IV) contrary to FA oxidation on AIROF, where the Ir(V)/Ir(IV) surface redox couple is involved. Finally, electrode stability measurements have shown that contrary to TDIROF, which are very stable under anodic polarization, the AIROF are rapidly corroded under anodic treatment. This corrosion is enhanced even further in the presence of formic aci

    Spatially Controlled Membrane Depositions for Silicon-Based Sensors

    Get PDF
    The membrane deposition technology on silicon-based transducers constitutes the most delicate part of the miniaturized (bio)chemical sensor fabrication. Membrane adhesion to the transducer, reproducibility of the deposition process and its spatial control are the three most important parameters which determine the sensor performance and lifetime.The fabrication of two sensors is described: 1) a combined pO2, pCO2, pH sensor for which a polyacrylamide gel and a polysiloxane gas-permeable membrane were deposited and patterned at the on-wafer level and 2) a glucose amperometric enzyme electrode where the glucose oxidase was immobilized electrochemically either in a polypyrrole matrix or co-deposited with bovine serum albumin by electrochemically aided adsorption. The optimization of the deposition procedures allowed reproducible devices with reasonable lifetimes to be obtained

    Modification des polymères conducteurs avec de petites particules métalliques; propriétés des films de polypyrrole et de polyaniline platines

    Get PDF
    The properties of two π-conjugated conducting polymers, polypyrrole, and polyaniline, modified with small amounts of Pt, have been investigated. Both polymers were prepared by electrochemical (cyclic voltammetric) polymerization in the form of thin films (less than 1 μm for polypyrrole, ca. 50-μm thick for polyaniline). It is shown that incorporation, via electrodeposition, of small amount of dispersed Pt particles, inside the polymer film, leads to radical change of its properties. Thus, the polypyrrole film electrode containing ca. 200 μg · cm-2 of Pt exhibits remarkably stable electrocatalytic activity towards anodic oxidation of an important fuel cell reactant – CH3OH. In contrast with the bulk Pt metal or the Pt dispersed on other supports, a polypyrrole/Pt composite does apparently not undergo poisoning, even in the course of prolonged oxidation runs. We show also that the incorporation of Pt microparticles, into several tens of μm thick polyniline films, results in a large enhancement of their redox switching rate between isolating and conducting states and vice versa

    Microfabricated Chemical Analysis Systems for Environmental Applications

    Get PDF
    Recent contributions to the design, development, and fabrication of microtechnological devices for chemical analysis are summarized. The discussion includes microdisk-electrode arrays for voltammetric analysis of trace metals, and micro total-analysis systems for coulometric nanotitrations of different analytes
    corecore