12 research outputs found

    Discovery of X-ray polarization angle rotation in active galaxy Mrk 421

    Full text link
    The magnetic field conditions in astrophysical relativistic jets can be probed by multiwavelength polarimetry, which has been recently extended to X-rays. For example, one can track how the magnetic field changes in the flow of the radiating particles by observing rotations of the electric vector position angle Κ\Psi. Here we report the discovery of a Κx\Psi_{\mathrm x} rotation in the X-ray band in the blazar Mrk 421 at an average flux state. Across the 5 days of Imaging X-ray Polarimetry Explorer (IXPE) observations of 4-6 and 7-9 June 2022, Κx\Psi_{\mathrm x} rotated in total by ≄360∘\geq360^\circ. Over the two respective date ranges, we find constant, within uncertainties, rotation rates (80±980 \pm 9 and 91±8∘/day91 \pm 8 ^\circ/\rm day) and polarization degrees (Πx=10%±1%\Pi_{\mathrm x}=10\%\pm1\%). Simulations of a random walk of the polarization vector indicate that it is unlikely that such rotation(s) are produced by a stochastic process. The X-ray emitting site does not completely overlap the radio/infrared/optical emission sites, as no similar rotation of Κ\Psi was observed in quasi-simultaneous data at longer wavelengths. We propose that the observed rotation was caused by a helical magnetic structure in the jet, illuminated in the X-rays by a localized shock propagating along this helix. The optically emitting region likely lies in a sheath surrounding an inner spine where the X-ray radiation is released

    Magnetic Field Properties inside the Jet of Mrk 421: Multiwavelength Polarimetry Including the Imaging X-ray Polarimetry Explorer

    Full text link
    We conducted a polarimetry campaign from radio to X-ray wavelengths of the high-synchrotron-peak (HSP) blazar Mrk 421, including Imaging X-ray Polarimetry Explorer (IXPE) measurements on 2022 December 6-8. We detected X-ray polarization of Mrk 421 with a degree of ΠX\Pi_{\rm X}=14±\pm1%\% and an electric-vector position angle ψX\psi_{\rm X}=107±\pm3∘^{\circ} in the 2-8 keV band. From the time variability analysis, we find a significant episodic variation in ψX\psi_{\rm X}. During 7 months from the first IXPE pointing of Mrk 421 in 2022 May, ψX\psi_{\rm X} varied across the range of 0∘^{\circ} to 180∘^{\circ}, while ΠX\Pi_{\rm X} maintained similar values within ∌\sim10-15%\%. Furthermore, a swing in ψX\psi_{\rm X} in 2022 June was accompanied by simultaneous spectral variations. The results of the multiwavelength polarimetry show that the X-ray polarization degree was generally ∌\sim2-3 times greater than that at longer wavelengths, while the polarization angle fluctuated. Additionally, based on radio, infrared, and optical polarimetry, we find that rotation of ψ\psi occurred in the opposite direction with respect to the rotation of ψX\psi_{\rm X} over longer timescales at similar epochs. The polarization behavior observed across multiple wavelengths is consistent with previous IXPE findings for HSP blazars. This result favors the energy-stratified shock model developed to explain variable emission in relativistic jets. The accompanying spectral variation during the ψX\psi_{\rm X} rotation can be explained by a fluctuation in the physical conditions, e.g., in the energy distribution of relativistic electrons. The opposite rotation direction of ψ\psi between the X-ray and longer-wavelength polarization accentuates the conclusion that the X-ray emitting region is spatially separated from that at longer wavelengths.Comment: 17 pages, 13 figures, 4 tables; Accepted for publication in A&

    X-ray Polarization Observations of BL Lacertae

    Get PDF
    Blazars are a class of jet-dominated active galactic nuclei with a typical double-humped spectral energy distribution. It is of common consensus the Synchrotron emission to be responsible for the low frequency peak, while the origin of the high frequency hump is still debated. The analysis of X-rays and their polarization can provide a valuable tool to understand the physical mechanisms responsible for the origin of high-energy emission of blazars. We report the first observations of BL Lacertae performed with the Imaging X-ray Polarimetry Explorer ({IXPE}), from which an upper limit to the polarization degree ΠX<\Pi_X<12.6\% was found in the 2-8 keV band. We contemporaneously measured the polarization in radio, infrared, and optical wavelengths. Our multiwavelength polarization analysis disfavors a significant contribution of proton synchrotron radiation to the X-ray emission at these epochs. Instead, it supports a leptonic origin for the X-ray emission in BL Lac.Comment: 17 pages, 5 figures, accepted for publication in ApJ

    The X-Ray Polarization View of Mrk 421 in an Average Flux State as Observed by the Imaging X-Ray Polarimetry Explorer

    Get PDF
    Particle acceleration mechanisms in supermassive black hole jets, such as shock acceleration, magnetic reconnection, and turbulence, are expected to have observable signatures in the multiwavelength polarization properties of blazars. The recent launch of the Imaging X-Ray Polarimetry Explorer (IXPE) enables us, for the first time, to use polarization in the X-ray band (2-8 keV) to probe the properties of the jet synchrotron emission in high-synchrotron-peaked BL Lac objects (HSPs). We report the discovery of X-ray linear polarization (degree pi(x) = 15% +/- 2% and electric vector position angle psi (x) = 35 degrees +/- 4 degrees) from the jet of the HSP Mrk 421 in an average X-ray flux state. At the same time, the degree of polarization at optical, infrared, and millimeter wavelengths was found to be lower by at least a factor of 3. During the IXPE pointing, the X-ray flux of the source increased by a factor of 2.2, while the polarization behavior was consistent with no variability. The higher level of pi(x) compared to longer wavelengths, and the absence of significant polarization variability, suggest a shock is the most likely X-ray emission site in the jet of Mrk 421 during the observation. The multiwavelength polarization properties are consistent with an energy-stratified electron population, where the particles emitting at longer wavelengths are located farther from the acceleration site, where they experience a more disordered magnetic field

    X-Ray Polarization of the BL Lacertae Type Blazar 1ES 0229+200

    No full text
    International audienceWe present polarization measurements in the 2-8 keV band from blazar 1ES 0229+200, the first extreme high synchrotron peaked source to be observed by the Imaging X-ray Polarimetry Explorer (IXPE). Combining two exposures separated by about two weeks, we find the degree of polarization to be ΠX = 17.9% ± 2.8% at an electric-vector position angle ψ X = 25.°0 ± 4.°6 using a spectro-polarimetric fit from joint IXPE and XMM-Newton observations. There is no evidence for the polarization degree or angle varying significantly with energy or time on both short timescales (hours) or longer timescales (days). The contemporaneous polarization degree at optical wavelengths was >7× lower, making 1ES 0229+200 the most strongly chromatic blazar yet observed. This high X-ray polarization compared to the optical provides further support that X-ray emission in high-peaked blazars originates in shock-accelerated, energy-stratified electron populations, but is in tension with many recent modeling efforts attempting to reproduce the spectral energy distribution of 1ES 0229+200, which attribute the extremely high energy synchrotron and Compton peaks to Fermi acceleration in the vicinity of strongly turbulent magnetic fields

    IXPE and Multiwavelength Observations of Blazar PG 1553+113 Reveal an Orphan Optical Polarization Swing

    No full text
    The lower-energy peak of the spectral energy distribution of blazars has commonly been ascribed to synchrotron radiation from relativistic particles in the jets. Despite the consensus regarding jet emission processes, the particle acceleration mechanism is still debated. Here, we present the first X-ray polarization observations of PG 1553+113, a high-synchrotron-peak blazar observed by the Imaging X-ray Polarimetry Explorer (IXPE). We detect an X-ray polarization degree of (10 ± 2)% along an electric-vector position angle of ψ _X = 86° ± 8°. At the same time, the radio and optical polarization degrees are lower by a factor of ∌3. During our IXPE pointing, we observed the first orphan optical polarization swing of the IXPE era, as the optical angle of PG 1553+113 underwent a smooth monotonic rotation by about 125°, with a rate of ∌17° day ^–1 . We do not find evidence of a similar rotation in either radio or X-rays, which suggests that the X-ray and optically emitting regions are separate or, at most, partially cospatial. Our spectropolarimetric results provide further evidence that the steady-state X-ray emission in blazars originates in a shock-accelerated and energy-stratified electron population

    X-Ray Polarization of BL Lacertae in Outburst

    No full text
    We report the first >99% confidence detection of X-ray polarization in BL Lacertae. During a recent X-ray/ Îł -ray outburst, a 287 ks observation (2022 November 27–30) was taken using the Imaging X-ray Polarimetry Explorer (IXPE), together with contemporaneous multiwavelength observations from the Neil Gehrels Swift observatory and XMM-Newton in soft X-rays (0.3–10 keV), NuSTAR in hard X-rays (3–70 keV), and optical polarization from the Calar Alto and Perkins Telescope observatories. Our contemporaneous X-ray data suggest that the IXPE energy band is at the crossover between the low- and high-frequency blazar emission humps. The source displays significant variability during the observation, and we measure polarization in three separate time bins. Contemporaneous X-ray spectra allow us to determine the relative contribution from each emission hump. We find >99% confidence X-ray polarization {{\rm{\Pi }}}_{2\mbox{--}4\mathrm{keV}}={21.7}_{-7.9}^{+5.6} \% and electric vector polarization angle ψ _2–4keV = −28.°7 ± 8.°7 in the time bin with highest estimated synchrotron flux contribution. We discuss possible implications of our observations, including previous IXPE BL Lacertae pointings, tentatively concluding that synchrotron self-Compton emission dominates over hadronic emission processes during the observed epochs

    X-Ray Polarization Observations of BL Lacertae

    No full text
    International audienceBlazars are a class of jet-dominated active galactic nuclei with a typical double-humped spectral energy distribution. It is of common consensus that the synchrotron emission is responsible for the low frequency peak, while the origin of the high frequency hump is still debated. The analysis of X-rays and their polarization can provide a valuable tool to understand the physical mechanisms responsible for the origin of high-energy emission of blazars. We report the first observations of BL Lacertae (BL Lac) performed with the Imaging X-ray Polarimetry Explorer, from which an upper limit to the polarization degree Π X < 12.6% was found in the 2-8 keV band. We contemporaneously measured the polarization in radio, infrared, and optical wavelengths. Our multiwavelength polarization analysis disfavors a significant contribution of proton-synchrotron radiation to the X-ray emission at these epochs. Instead, it supports a leptonic origin for the X-ray emission in BL Lac
    corecore