11 research outputs found

    Assessment of terrestrial small mammals and a record of the critically endangered shrew Crocidura wimmeri in Banco National Park (CĂ´te d'Ivoire)

    Get PDF
    This study investigated the small mammal community of the periurban Banco National Park (34 km2), Abidjan, Côte d'Ivoire, using identical numbers of Sherman and Longworth traps. We aimed to determine the diversity and distribution of rodents and shrews in three different habitats: primary forest, secondary forest and swamp. Using 5014 trap-nights, 91 individuals were captured that comprised seven rodent and four shrew species. The trapping success was significantly different for each species, i.e., the Longworth traps captured more soricids (31/36 shrews), whereas the Sherman traps captured more murids (37/55 mice). The most frequent species was Praomys cf. rostratus, followed by Crocidura buettikoferi, Hybomys trivirgatus and Crocidura jouvenetae. Indices of species richness (S) and diversity (H′) were greatest in primary forest, followed by secondary forest and swamp. Several expected species, such as Crocidura obscurior, were not found, whereas we captured four specimens of the critically endangered (IUCN 2012) Wimmer's shrew Crocidura wimmeri, a species that has vanished from its type locality, Adiopodoumé. Therefore, Banco National Park represents an important sanctuary, not only for plants, birds and primates, but also for other small forest vertebrate

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Skin disease prevalence study in schoolchildren in rural CĂ´te d'Ivoire: Implications for integration of neglected skin diseases (skin NTDs)

    No full text
    <div><p>Background</p><p>Early detection of several skin-related neglected tropical diseases (skin NTDs)–including leprosy, Buruli ulcer, yaws, and scabies- may be achieved through school surveys, but such an approach has seldom been tested systematically on a large scale in endemic countries. Additionally, a better understanding of the spectrum of skin diseases and the at-risk populations to be encountered during such surveys is necessary to facilitate the process.</p><p>Methods</p><p>We performed a school skin survey for selected NTDs and the spectrum of skin diseases, among primary schoolchildren aged 5 to 15 in Côte d’Ivoire, West Africa. This 2-phase survey took place in 49 schools from 16 villages in the Adzopé health district from November 2015 to January 2016. The first phase involved a rapid visual examination of the skin by local community healthcare workers (village nurses) to identify any skin abnormality. In a second phase, a specialized medical team including dermatologists performed a total skin examination of all screened students with any skin lesion and provided treatment where necessary.</p><p>Results</p><p>Of a total of 13,019 children, 3,504 screened positive for skin lesions and were listed for the next stage examination. The medical team examined 1,138 of these children. The overall prevalence of skin diseases was 25.6% (95% CI: 24.3–26.9%). The predominant diagnoses were fungal infections (n = 858, prevalence: 22.3%), followed by inflammatory skin diseases (n = 265, prevalence: 6.9%). Skin diseases were more common in boys and in children living along the main road with heavy traffic. One case of multi-bacillary type leprosy was detected early, along with 36 cases of scabies. Our survey was met with very good community acceptance.</p><p>Conclusion</p><p>We carried out the first large-scale integrated, two-phase pediatric multi-skin NTD survey in rural Côte d’Ivoire, effectively reaching a large population. We found a high prevalence of skin diseases in children, but only limited number of skin NTDs. With the lessons learned, we plan to expand the project to a wider area to further explore its potential to better integrate skin NTD screening in the public health agenda.</p></div

    Effect of isoniazid preventive therapy on risk of death in west African, HIV-infected adults with high CD4 cell counts: long-term follow-up of the Temprano ANRS 12136 trial

    No full text
    International audienc
    corecore