16 research outputs found

    Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes

    Full text link
    We compare the properties of subwavelength imaging in the visible wavelength range for metal-dielectric multilayers operating in the canalization and the resonant tunnelling regimes. The analysis is based on the transfer matrix method and time domain simulations. We show that Point Spread Functions for the first two resonances in the canalization regime are approximately Gaussian in shape. Material losses suppress transmission for higher resonances, regularise the PSF but do not compromise the resolution. In the resonant tunnelling regime, the MTF may dramatically vary in their phase dependence. Resulting PSF may have a sub-wavelength thickness as well as may be broad with multiple maxima and a rapid phase modulation. We show that the width of PSF may be reduced by further propagation in free space, and we provide arguments to explain this surprising observation.Comment: 17 pages,12 figure

    Fourier Optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers

    Full text link
    Metal-dielectric layered stacks for imaging with sub-wavelength resolution are regarded as linear isoplanatic systems - a concept popular in Fourier Optics and in scalar diffraction theory. In this context, a layered flat lens is a one-dimensional spatial filter characterised by the point spread function. However, depending on the model of the source, the definition of the point spread function for multilayers with sub-wavelength resolution may be formulated in several ways. Here, a distinction is made between a soft source and hard electric or magnetic sources. Each of these definitions leads to a different meaning of perfect imaging. It is shown that some simple interpretations of the PSF, such as the relation of its width to the resolution of the imaging system are ambiguous for the multilayers with sub-wavelenth resolution. These differences must be observed in point spread function engineering of layered systems with sub-wavelength sized PSF

    Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers

    Get PDF
    We demonstrate numerically the diffraction-free propagation of sub-wavelength sized optical beams through simple elements built of metal-dielectric multilayers. The proposed metamaterial consists of silver and a high refractive index dielectric, and is designed using the effective medium theory as strongly anisotropic and impedance matched to air. Further it is characterised with the transfer matrix method, and investigated with FDTD. The diffraction-free behaviour is verified by the analysis of FWHM of PSF in the function of the number of periods. Small reflections, small attenuation, and reduced Fabry Perot resonances make it a flexible diffraction-free material for arbitrarily shaped optical planar elements with sizes of the order of one wavelength.Comment: 5 pages, 4 figure

    Layered and core-shell uniaxial absorbers

    No full text
    We derive periodic multilayer absorbers with effective uniaxial properties similar to a perfectly matched layer (PML). This approximate representation of a PML is based on effective medium theory, and we call it an effective medium PML (EM-PML). We also show that cylindrical core-shell nanostructures derived from flat multilayers also exhibit very good absorptive and reflective properties despite the different geometry

    Two-dimensional imaging in hyperbolic media–the role of field components and ordinary waves

    Get PDF
    We study full vector imaging of two dimensional source fields through finite slabs of media with extreme anisotropy, such as hyperbolic media. For this, we adapt the exact transfer matrix method for uniaxial media to calculate the two dimensional transfer functions and point spread functions for arbitrary vector fields described in Cartesian coordinates. This is more convenient for imaging simulations than the use of the natural, propagation direction-dependent TE/TM basis, and clarifies which field components contribute to sub-diffraction imaging. We study the effect of ordinary waves on image quality, which previous one-dimensional approaches could not consider. Perfect sub-diffraction imaging can be achieved if longitudinal fields are measured, but in the more common case where field intensities or transverse fields are measured, ordinary waves cause artefacts. These become more prevalent when attempting to image large objects with high resolution. We discuss implications for curved hyperbolic imaging geometries such as hyperlenses
    corecore