59 research outputs found

    Generalized Geologic Map for Land-Use Planning: Breckinridge County, Kentucky

    Get PDF
    This map is not intended to be used for selecting individual sites. Its purpose is to inform land-use planners, government officials, and the public in a general way about geologic bedrock conditions that affect the selection of sites for various purposes. The properties of thick soils may supercede those of the underlying bedrock and should be considered on a site-to-site basis. At any site, it is important to understand the characteristics of both the soils and the underlying rock

    5\u3csup\u3eth\u3c/sup\u3e Generation vs 4\u3csup\u3eth\u3c/sup\u3e Generation Troponin T in Predicting Major Adverse Cardiovascular Events and All-Cause Mortality in Patients Hospitalized for Non-Cardiac Indications: A Cohort Study

    Get PDF
    OBJECTIVE: The frequency and implications of an elevated cardiac troponin (4th or 5th generation TnT) in patients outside of the emergency department or presenting with non-cardiac conditions is unclear. METHODS: Consecutive patients aged 18 years or older admitted for a primary non-cardiac condition who had the 4th generation TnT drawn had the 5th generation TnT run on the residual blood sample. Primary and secondary outcomes were all-cause mortality (ACM) and major adverse cardiovascular events (MACE) respectively at 1 year. RESULTS: 918 patients were included (mean age 59.8 years, 55% male) in the cohort. 69% had elevated 5th generation TnT while 46% had elevated 4th generation TnT. 5th generation TnT was more sensitive and less specific than 4th generation TnT in predicting both ACM and MACE. The sensitivities for the 5th generation TnT assay were 85% for ACM and 90% for MACE rates, compared to 65% and 70% respectively for the 4th generation assay. 5th generation TnT positive patients that were missed by 4th generation TnT had a higher risk of ACM (27.5%) than patients with both assays negative (27.5% vs 11.1%, p\u3c 0.001), but lower than patients who had both assay positive (42.1%). MACE rates were not better stratified using the 5th generation TnT assay. CONCLUSIONS: In patients admitted for a non-cardiac condition, 5th generation TnT is more sensitive although less specific in predicting MACE and ACM. 5th generation TnT identifies an intermediate risk group for ACM previously missed with the 4th generation assay

    Establishing Diagnostic Criteria for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 3].

    Get PDF
    STUDY DESIGN: Narrative review. OBJECTIVES: To discuss the importance of establishing diagnostic criteria in Degenerative Cervical Myelopathy (DCM), including factors that must be taken into account and challenges that must be overcome in this process. METHODS: Literature review summarising current evidence of establishing diagnostic criteria for DCM. RESULTS: Degenerative Cervical Myelopathy (DCM) is characterised by a degenerative process of the cervical spine resulting in chronic spinal cord dysfunction and subsequent neurological disability. Diagnostic delays lead to progressive neurological decline with associated reduction in quality of life for patients. Surgical decompression may halt neurologic worsening and, in many cases, improves function. Therefore, making a prompt diagnosis of DCM in order to facilitate early surgical intervention is a clinical priority in DCM. CONCLUSION: There are often extensive delays in the diagnosis of DCM. Presently, no single set of diagnostic criteria exists for DCM, making it challenging for clinicians to make the diagnosis. Earlier diagnosis and subsequent specialist referral could lead to improved patient outcomes using existing treatment modalities

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease

    Get PDF
    Functional brain networks detected in task-free (“resting-state”) functional magnetic resonance imaging (fMRI) have a small-world architecture that reflects a robust functional organization of the brain. Here, we examined whether this functional organization is disrupted in Alzheimer's disease (AD). Task-free fMRI data from 21 AD subjects and 18 age-matched controls were obtained. Wavelet analysis was applied to the fMRI data to compute frequency-dependent correlation matrices. Correlation matrices were thresholded to create 90-node undirected-graphs of functional brain networks. Small-world metrics (characteristic path length and clustering coefficient) were computed using graph analytical methods. In the low frequency interval 0.01 to 0.05 Hz, functional brain networks in controls showed small-world organization of brain activity, characterized by a high clustering coefficient and a low characteristic path length. In contrast, functional brain networks in AD showed loss of small-world properties, characterized by a significantly lower clustering coefficient (p<0.01), indicative of disrupted local connectivity. Clustering coefficients for the left and right hippocampus were significantly lower (p<0.01) in the AD group compared to the control group. Furthermore, the clustering coefficient distinguished AD participants from the controls with a sensitivity of 72% and specificity of 78%. Our study provides new evidence that there is disrupted organization of functional brain networks in AD. Small-world metrics can characterize the functional organization of the brain in AD, and our findings further suggest that these network measures may be useful as an imaging-based biomarker to distinguish AD from healthy aging

    High-Resolution Microbial Community Succession of Microbially Induced Concrete Corrosion in Working Sanitary Manholes

    No full text
    <div><p>Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer <i>Acidithiobacillus</i> spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.</p></div
    corecore