642 research outputs found

    A Bayesian Nonparametric Markovian Model for Nonstationary Time Series

    Full text link
    Stationary time series models built from parametric distributions are, in general, limited in scope due to the assumptions imposed on the residual distribution and autoregression relationship. We present a modeling approach for univariate time series data, which makes no assumptions of stationarity, and can accommodate complex dynamics and capture nonstandard distributions. The model for the transition density arises from the conditional distribution implied by a Bayesian nonparametric mixture of bivariate normals. This implies a flexible autoregressive form for the conditional transition density, defining a time-homogeneous, nonstationary, Markovian model for real-valued data indexed in discrete-time. To obtain a more computationally tractable algorithm for posterior inference, we utilize a square-root-free Cholesky decomposition of the mixture kernel covariance matrix. Results from simulated data suggest the model is able to recover challenging transition and predictive densities. We also illustrate the model on time intervals between eruptions of the Old Faithful geyser. Extensions to accommodate higher order structure and to develop a state-space model are also discussed

    A Fully Nonparametric Modelling Approach to Binary Regression

    Full text link
    We propose a general nonparametric Bayesian framework for binary regression, which is built from modeling for the joint response-covariate distribution. The observed binary responses are assumed to arise from underlying continuous random variables through discretization, and we model the joint distribution of these latent responses and the covariates using a Dirichlet process mixture of multivariate normals. We show that the kernel of the induced mixture model for the observed data is identifiable upon a restriction on the latent variables. To allow for appropriate dependence structure while facilitating identifiability, we use a square-root-free Cholesky decomposition of the covariance matrix in the normal mixture kernel. In addition to allowing for the necessary restriction, this modeling strategy provides substantial simplifications in implementation of Markov chain Monte Carlo posterior simulation. We present two data examples taken from areas for which the methodology is especially well suited. In particular, the first example involves estimation of relationships between environmental variables, and the second develops inference for natural selection surfaces in evolutionary biology. Finally, we discuss extensions to regression settings with multivariate ordinal responses

    Bayesian spectral modeling for multiple time series

    Get PDF
    We develop a novel Bayesian modeling approach to spectral density estimation for multiple time series. The log-periodogram distribution for each series is modeled as a mixture of Gaussian distributions with frequency-dependent weights and mean functions. The implied model for the log-spectral density is a mixture of linear mean functions with frequency-dependent weights. The mixture weights are built through successive differences of a logit-normal distribution function with frequency-dependent parameters. Building from the construction for a single spectral density, we develop a hierarchical extension for multiple time series. Specifically, we set the mean functions to be common to all spectral densities and make the weights specific to the time series through the parameters of the logit-normal distribution. In addition to accommodating flexible spectral density shapes, a practically important feature of the proposed formulation is that it allows for ready posterior simulation through a Gibbs sampler with closed form full conditional distributions for all model parameters. The modeling approach is illustrated with simulated datasets, and used for spectral analysis of multichannel electroencephalographic recordings (EEGs), which provides a key motivating application for the proposed methodology

    USAF Pilot Perceptions of Workload Assessment in a Combat or High-Threat Environment

    Get PDF
    This study analyzed the self-reported survey responses of 219 Air Force Pilots concerning their perceptions of workload assessment in a combat or a high threat environment. The first objective of this study was to determine and compare the combat workload factors of varying importance in combat workload assessment by aircraft and mission type flown. The second objective was to examine the pilots\u27 perception of combat mission inflight workload. A stepwise regression model to predict the pilots\u27 perceptions of inflight workload using pilots\u27 characteristics data was explored. Research conclusion varied among aircraft types. Combat workload items indicated as distractingly important were similar for all aircraft types, while items in lower level of importance were impacted by aircraft type. Mean Combat Workload (CWL) scores of pilots from each aircraft type were not significantly different. Overall, it was concluded that surveying pilots who had flown in combat or high threat environments provided useful responses to assess pilot workload; however, findings based on subjective assessments, provide tentative grounds for further research

    The Neutron Star Mass Distribution

    Full text link
    In recent years, the number of pulsars with secure mass measurements has increased to a level that allows us to probe the underlying neutron star (NS) mass distribution in detail. We critically review the radio pulsar mass measurements. For the first time, we are able to analyze a sizable population of NSs with a flexible modeling approach that can effectively accommodate a skewed underlying distribution and asymmetric measurement errors. We find that NSs that have evolved through different evolutionary paths reflect distinctive signatures through dissimilar distribution peak and mass cutoff values. NSs in double neutron star and neutron star-white dwarf systems show consistent respective peaks at 1.33 Msun and 1.55 Msun suggesting significant mass accretion (delta m~0.22 Msun) has occurred during the spin-up phase. The width of the mass distribution implied by double NS systems is indicative of a tight initial mass function while the inferred mass range is significantly wider for NSs that have gone through recycling. We find a mass cutoff at ~2.1 Msun for NSs with white dwarf companions which establishes a firm lower bound for the maximum NS mass. This rules out the majority of strange quark and soft equation of state models as viable configurations for NS matter. The lack of truncation close to the maximum mass cutoff along with the skewed nature of the inferred mass distribution both enforce the suggestion that the 2.1 Msun limit is set by evolutionary constraints rather than nuclear physics or general relativity, and the existence of rare super-massive NSs is possible.Comment: 13 pages, 4 figures, 2 tables. ApJ in press. A completely new and more flexible statistical model applied. Astrophysical results remained same as arXiv:1011.429

    State v. Fordsham, 362 P.2d 413 (Mont. 1961)

    Get PDF
    State v. Fordsha

    Structured Mixture of Continuation-ratio Logits Models for Ordinal Regression

    Full text link
    We develop a nonparametric Bayesian modeling approach to ordinal regression based on priors placed directly on the discrete distribution of the ordinal responses. The prior probability models are built from a structured mixture of multinomial distributions. We leverage a continuation-ratio logits representation to formulate the mixture kernel, with mixture weights defined through the logit stick-breaking process that incorporates the covariates through a linear function. The implied regression functions for the response probabilities can be expressed as weighted sums of parametric regression functions, with covariate-dependent weights. Thus, the modeling approach achieves flexible ordinal regression relationships, avoiding linearity or additivity assumptions in the covariate effects. A key model feature is that the parameters for both the mixture kernel and the mixture weights can be associated with a continuation-ratio logits regression structure. Hence, an efficient and relatively easy to implement posterior simulation method can be designed, using P\'olya-Gamma data augmentation. Moreover, the model is built from a conditional independence structure for category-specific parameters, which results in additional computational efficiency gains through partial parallel sampling. In addition to the general mixture structure, we study simplified model versions that incorporate covariate dependence only in the mixture kernel parameters or only in the mixture weights. For all proposed models, we discuss approaches to prior specification and develop Markov chain Monte Carlo methods for posterior simulation. The methodology is illustrated with several synthetic and real data examples
    corecore