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ABSTRACT
We develop a novel Bayesian modeling approach to spectral density estimation for multiple time series.
The log-periodogram distribution for each series is modeled as a mixture of Gaussian distributions with
frequency-dependent weights and mean functions. The implied model for the log-spectral density is
a mixture of linear mean functions with frequency-dependent weights. The mixture weights are built
through successive differences of a logit-normal distribution function with frequency-dependent param-
eters. Building from the construction for a single spectral density, we develop a hierarchical extension for
multiple time series. Specifically, we set the mean functions to be common to all spectral densities and
make the weights specific to the time series through the parameters of the logit-normal distribution. In
addition to accommodating flexible spectral density shapes, a practically important feature of the proposed
formulation is that it allows for ready posterior simulation through a Gibbs sampler with closed form full
conditional distributions for all model parameters. The modeling approach is illustrated with simulated
datasets and used for spectral analysis of multichannel electroencephalographic recordings, which provides
a key motivating application for the proposed methodology.
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1. Introduction

The problem of modeling multiple time series in the spectral
domain arises naturally in fields where information about fre-
quency behavior is relevant and several signals are recorded con-
currently, as in neuroscience, econometrics, and geoscience. In
these fields, there is growing interest in different types of infer-
ence based on a collection of related time series. For example,
multichannel electroencephalography (EEG) records measure-
ments of electrical potential fluctuations at multiple locations
on the scalp of a human subject. Identifying which locations
lead to electrical brain signals with similar spectral densities and
grouping them based on common spectral features is particu-
larly meaningful, as it provides insights about the physiological
state of the subject and about the spatial structure of cortical
brain activity under certain experimental or clinical conditions.
Therefore, developing and implementing flexible methods for
spectral analysis of multiple time series is crucial in this area.
It is worth emphasizing that we are considering multiple—not
multivariate—time series. For a description of methods for mul-
tivariate time series in the spectral domain, refer, for example, to
Shumway and Stoffer (2011).

Let x1, . . . , xn be n realizations from a zero-mean, weakly
stationary time series {Xt : t = 1, 2, . . .}, with absolutely
summable autocovariance function γ (·). The spectral density
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function is defined as

f (ω) =
+∞∑

k=−∞
γ (k) exp (−ikω) , for − π ≤ ω ≤ π ,

where γ (k) = E(Xt+kXt) denotes the autocovariance function.
The standard estimator for the spectral density is the peri-
odogram, In(ω) = ∣∣∑n

t=1 xt exp (−itω)
∣∣2

/n. Although In(ω)

is defined for all ω ∈ [−π , π ], it is computed at the Fourier
frequencies ωj = 2π j/n, for j = 0, . . . , �n/2�, where �n/2� is
the largest integer not greater than n/2. Because of the symmetry
of the periodogram, there are only �n/2� + 1 effective observa-
tions. Furthermore, following common practice, we exclude the
observations at ω0 = 0 and ω�n/2� = 2π�n/2�/n, resulting in a
sample size in the frequency domain of N = �n/2� − 1. Since
the periodogram is not a consistent estimator of the spectral
density, improved estimators have been obtained by smoothing
the periodogram or the log-periodogram through windowing
methods (e.g., Parzen 1962).

Model-based approaches to spectral density estimation are
typically built from the Whittle likelihood approximation to the
periodogram (Whittle 1957). For relatively large sample sizes,
the periodogram realizations at the Fourier frequencies, In(ωj),
can be considered independent. In addition, for large n and for
zero-mean Gaussian time series, the In(ωj), for j �= 0, �n/2�,
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are independent exponentially distributed with mean f (ω). The
main advantage of the Whittle likelihood with respect to the true
likelihood is that the spectral density appears explicitly and not
through the autocovariance function, and the estimation prob-
lem can be cast in a regression framework with observations
given by the log-periodogram ordinates and regression function
defined by the log-spectral density. In particular, log(In(ωj)) =
log(f (ωj)) + εj, for j = 1, . . . , N, where the εj follow a log-
exponential distribution with scale parameter 1. In this context,
frequentist estimation approaches include approximating the
distribution of the εj with a normal distribution and fitting a
smoothing spline to the log-periodogram (Wahba 1980), and
maximizing the Whittle likelihood with a roughness penalty
term (Pawitan and O’Sullivan 1994). Regarding Bayesian mod-
eling approaches: Carter and Kohn (1997) approximated the
distribution of the εj with a mixture of normal distributions and
assign a smoothing prior to log(f (ω)); Choudhuri, Ghosal, and
Roy (2004) used Bernstein polynomial priors (Petrone 1999)
for the spectral density; Rosen and Stoffer (2007) expressed the
log-spectral density as log(f (ω)) = α0 + α1ω + h(ω), with
a Gaussian process prior on h(ω); and Pensky, Vidakovic, and
DeCanditiis (2007) proposed Bayesian wavelet-based smooth-
ing of the log-periodogram. More recently, Macaro and Prado
(2014) extended Choudhuri, Ghosal, and Roy (2004) to consider
spectral decompositions of multiple time series in designed
factorial experiments, and Krafty et al. (2017) extended Rosen
and Stoffer (2007) to handle replicated trivariate time series.

Here, we propose a flexible Bayesian modeling approach for
multiple time series that leads to full inference of the mul-
tiple spectral densities and also allows us to identify groups
of time series with similar spectral characteristics. To build a
new model for a single log-spectral density, we use the Whit-
tle approximation in the frequency domain, albeit only to the
extent that the expectation of log(In(ω)) is, up to a constant,
equal to log(f (ω)). Motivated by results in Jiang and Tanner
(1999) and Norets (2010), we replace the Whittle approximation
implied log-periodogram distribution with a mixture of Gaus-
sian distributions with frequency-dependent mixture weights
and mean parameters. The expectation of the Gaussian mixture
distribution results in a model for the log-spectral density that
can be represented as a smooth mixture of the Gaussian mean
functions. The model structure for the log-spectral density is
an important feature of the methodology with respect to the
extension to modeling multiple spectral densities. Next, we
develop a novel construction for the mixture weights which are
built by consecutive differences of a logit-normal distribution
function with frequency-dependent parameters. A key advan-
tage of this construction is computational, as we can intro-
duce normally distributed auxiliary random variables and draw
from well-established posterior simulation methods for mixture
models. As we extend the model to multiple time series, we
set the linear functions in the mixture representation to be the
same across time series, thus capturing characteristics which are
shared among several spectral densities, whereas the mixture
weights parameters are allowed to vary across time series, in
such a way that they can select for each spectral density the
appropriate mixture of mean functions. The proposed model is
more parsimonious than the fully Bayesian model-based spec-
tral estimation approaches mentioned above, leading to more

efficient posterior simulation. Therefore, the methodology can
be used to analyze temporal datasets that consist of a relatively
large number of related time series.

Accurate estimation of spectral densities for multiple brain
signals is of primary importance for neuroscience studies, which
provide a key application area for our methodology. Spectral
densities can appropriately summarize characteristics of brain
signals recorded in various experimental or clinical settings,
as documented in the literature. For instance, certain spectral
characteristics of EEGs recorded from patients who received
electroconvulsive therapy (ECT) as a treatment for major
depression have been associated with the clinical efficacy of such
treatment (Krystal, Prado, and West 1999). Also, in the area of
monitoring and detection of mental fatigue, prior EEG studies
have suggested an association of fatigue with an increase in the
theta (4–8 Hz) band power observed in the estimated spectral
of signals recorded in channels located in midline frontal scalp
areas (Trejo et al. 2007).

The outline of the article is as follows. In Section 2, we
describe the modeling approach, with technical details included
in two appendices. In Section 3, we present results from an
extensive simulation study. In Section 4, we apply the proposed
model to data from multichannel EEG recordings. Finally, Sec-
tion 5 concludes with a summary and discussion of possible
extensions of the methodology.

2. The Modeling Approach

Here, we present the new approach to spectral modeling and
inference for multiple related time series. We begin in Sec-
tion 2.1 by describing the model for the log-spectral density of a
single time series based on a Gaussian mixture approximation to
the log-periodogram distribution. The model is then extended
to multiple time series in Section 2.2.

2.1. Mixture Model Approximation to the Whittle
Log-Likelihood

To motivate the modeling approach, consider the distribution
of the translated log-periodogram under the Whittle likelihood.
The translation constant is such that, under the Whittle approx-
imation, the expected value of the log-periodogram is the log-
spectral density. Specifically, we define yj = log(In(ωj)) + γ ,
where γ ≈ 0.57722 is the Euler–Mascheroni constant. At the
Fourier frequencies, under the Whittle likelihood approxima-
tion, the yj are independent with the following distribution:
fY(y) = exp{y − γ − log(f (ω)) − exp(y − γ − log(f (ω)))},

y ∈ R. (1)
Therefore, E[yj] = log(f (ωj)) and var[yj] = π2/6. Notice that
the distribution in (1) is in the exponential family, and −yj
are Gumbel distributed with scale parameter 1 and location
parameter defined additively through log(f (ω)) and γ , such that
the mean is − log(f (ω)). Although (1) is a standard distribu-
tion, the spectral density enters the likelihood in a nonstandard
fashion through the mean parameter. Nevertheless, the Whittle
approximation has been widely used in the literature because the
spectral density appears explicitly in the approximate likelihood
rather than through the covariance function.
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We propose to replace the distribution in (1) with a
structured mixture of Gaussian distributions, defined through
frequency-dependent mixture weights and Gaussian mean
functions. More specifically, the model on the yj is

yj | θ
ind.∼

K∑
k=1

gk(ωj; ξ) N(yj | αk + βk ωj/π , σ 2),

j = 1, . . . , N, (2)

where gk(ωj; ξ) denotes the kth mixture weight, and ξ is the
vector of the weight parameters. The weight parameters vary
depending on the specific form of the weights and will be
fully specified in each case. The vector θ collects all model
parameters, specifically, the weight parameters ξ , the intercept
and slope parameters of the K mixture components means,
that is, α = {αk : k = 1, . . . , K} and β = {βk : k =
1, . . . , K}, and the common variance parameter σ 2. Note that,
following common practice, we have divided ω by π , so that the
normalized frequency range is (0, 1). This is done both in the
Gaussian mean functions and in the weight functions, although
for simpler notation we write gk(ω; ξ).

Under the Whittle approximation, E[log(In(ω)) + γ ] =
log(f (ω)). Our approach replaces the Whittle log-periodogram
distribution in (1) with the Gaussian mixture distribution in (2),
and it is thus the expectation of this latter distribution that yields
the log-spectral density model. (Theoretical justification for this
modeling approach is discussed later in the section.) Hence, the
model for the log-spectral density:

log(f (ω)) =
K∑

k=1
gk(ω; ξ) {αk + βk ω/π}, ω ∈ (0, 1), (3)

that is, the log-spectral density admits a representation as a
mixture of linear functions with component specific intercept
and slope parameters, and with frequency-dependent weights
that allow for local adjustment, and thus flexible spectral density
shapes.

A key feature of the modeling approach is a novel specifi-
cation for the mixture weights, which are built by consecutive
differences of a distribution function on (0, 1) with frequency-
dependent parameters. More specifically,

gk(ω; ξ) ≡ gk(μ(ω), τ) =
∫ k/K

(k−1)/K
fY(y | μ(ω), τ) dy, (4)

where fY(y | μ(ω), τ) is the density of a logit-normal distri-
bution on (0, 1), such that the underlying normal distribution
has mean μ(ω) and precision parameter τ . Hence, at each
frequency, we have a different set of weights which however
evolve smoothly with the frequency. If μ(ω) is a monotonic
function in ω, the weights define a partition on the support
(0, 1). We work with a linear function μ(ω) = ζ + φ ω/π .
Although other monotonic functions can be used, the linear
form suffices for the theoretical results discussed below and it
also facilitates posterior simulation. Parameters ζ and φ control
the modes of the weights, which in turn determine the shape
of the log-spectral density. The parameter τ is a smoothness
parameter, with smaller values of τ leading to smoother spectral

densities. Hence, the parameters of the logit-normal distribu-
tion are interpretable and play a clear role in the shape of the
weights.

The formulation for the mixture weights in (4), including the
choice of the logit-normal distribution function, facilitates the
implementation of a Markov chain Monte Carlo (MCMC) algo-
rithm for posterior simulation. In particular, we can augment
model (2), using continuous auxiliary variables. For each yj, j =
1, . . . , N, we introduce auxiliary variable rj, which is normally
distributed with mean μ(ωj) = ζ + φ ωj/π and precision
parameter τ . Then, the augmented model can be written as

yj | rj, α, β , σ 2 ind.∼
K∑

k=1
N(yj | αk + βk ωj/π , σ 2)

× I

{
(k − 1)/K <

exp(rj)

1 + exp(rj)
≤ k/K

}
,

rj | ξ
ind.∼ N(rj | ζ + φ ωj/π , 1/τ),

where ξ = (ζ , φ, τ). The full Bayesian model for a single
spectral density would be completed with priors for σ 2 and
for the elements of α, β , and ξ . This structure allows for a
straightforward implementation of a Gibbs sampling algorithm
with full conditional distributions available in closed form for all
model parameters. This is demonstrated in Appendix B, in the
context of the hierarchical model developed later in Section 2.2.

The Gaussian mixture model in (2), and the implied model
for the log-spectral density in (3), are motivated by the theo-
retical results of Jiang and Tanner (1999) and Norets (2010).
Jiang and Tanner (1999) showed that an exponential response
distribution, involving a regression function on a finite support,
can be approximated by a mixture of exponential distributions
with means that depend on the covariates and with covariate-
dependent mixture weights. More directly related to our model,
Norets (2010) presented approximation properties of finite local
mixtures of normal regressions as flexible models for condi-
tional densities. The work in Norets (2010) focuses on the joint
distribution of the response and covariates, showing that, under
certain conditions, the joint distribution can be approximated
in Kullback–Leibler divergence by different specifications of
local finite mixtures of normals in which means, variances, and
weights can depend on the covariates. Here, we consider fixed
covariate values defined by the Fourier frequencies.

The key property underlying the approximation results
in Jiang and Tanner (1999) and Norets (2010) is that the
covariate-dependent (frequency-dependent in our context)
mixture weights are such that, for some values of the weights
parameters, they approximate a set of indicator functions on
a fine partition of the finite support. Lemma 1 in Appendix A
establishes this condition for the mixture weights defined in (4).
Under this condition, it can be proved that, as the number of
components increases, the approximation in (2) tends to (1) in
the sense of the Kullback–Leibler divergence. Moreover, under a
smoothness assumption for the log-spectral density—assuming
that log(f (ω)) and its first and second derivatives are continuous
and bounded—further theoretical justification for the model in
(3) can be provided by means of results in the Lp norm for the
log-spectral density; refer to the Theorem in Appendix A.
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In comparison with the Bayesian inference methods for a sin-
gle spectral density discussed in Section 1, we note a conceptual
difference for our modeling approach. Existing methods share
what may be viewed as a “semiparametric” modeling theme in
that they stem from the Whittle log-periodogram distribution
that includes the log-spectral density as a parameter, which is
then assigned a nonparametric prior. In particular, Carter and
Kohn (1997) and Rosen and Stoffer (2007) placed a smooth-
ing spline prior on the log-spectral density, while Choudhuri,
Ghosal, and Roy (2004) used a Bernstein polynomial prior for
the normalized spectral density. We instead model directly the
log-periodogram distribution with a mixture of Gaussian dis-
tributions with frequency-dependent weights and means. This
implies the local mixture of linear functions model for the log-
spectral density, which is key for our main objective, that is,
flexible inference for multiple spectral densities.

Under this modeling framework, logistic weights form
another class of mixture weights that satisfy the theoretical prop-
erty discussed above. Such weights have the form gk(ω; ξ) =
exp{(ζk + φk ω/π)/λ}/∑K

i=1 exp{(ζi + φi ω/π)/λ}. Here, the
parameter λ controls the smoothness of the transition from one
subinterval of (0, 1) to another. The larger the value of λ, the
smoother is the corresponding spectral density. Logistic weights
have been used for spectral density estimation of a single time
series in Cadonna, Kottas, and Prado (2017). Note that logistic
weights are specified through a (2K + 1)-dimensional vector ξ .
Therefore, the number of parameters for models that consider
these weights increases linearly with the number of components
K. Moreover, the denominator in the logistic weights form
complicates posterior simulation. Cadonna, Kottas, and Prado
(2017) used a data augmentation step, based on auxiliary Pólya-
Gamma variables (Polson, Scott, and Windle 2013), which
requires N latent variables for each k = 1, . . . , K, thus increasing
considerably the computational cost even for a single spectral
density. Alternatively, the formulation for the mixture weights
in (4) provides key computational advantages, as the weights
are fully specified through three parameters for a single spectral
density, leading to more efficient posterior simulation.

2.2. Hierarchical Model for Multiple Spectral Densities

The model for a single time series, presented in Section 2.1,
was developed with a hierarchical extension in mind. Con-
sider M related time series, which, without loss of generality,
are assumed to have the same number of observations n. For
example, assume that M is the number of channels located over
a subject’s scalp for which we have EEG recordings. For each
time series, we have N observations from the (translated) log-
periodogram, which we denote as ymj, where the first index
indicates the time series (m = 1, . . . , M) and the second
indicates the Fourier frequency (j = 1, . . . , N).

Now, for each m and each j we approximate the distribution
of the ymj with a smooth mixture of Gaussian distributions, as
described in the previous section. We take the mean parameters
of the Gaussian mixture components, that is, (αk, βk), for
k = 1, . . . , K, to be common among time series. This translates
into a set of K linear basis functions for the log-spectral
density model which are common to all time series. On the

other hand, we let the parameters that specify the weights
be time series specific, that is, we use the form in (4) with
parameters ξm = (ζm, φm, τm), for m = 1, . . . , M. For
each time series, the weights select the linear functions to
approximate the corresponding log-spectral density. Since the
spectral densities are related, similar linear basis functions can
be selected for more than one location, allowing grouping of
spectral densities. We use M distinct smoothness parameters
τm to allow different levels of smoothness across the spectral
densities.

Hence, extending (2), the observation stage for the hierarchi-
cal model on the M time series can be written as

ymj | θ
ind.∼

K∑
k=1

gk(μm(ωj), τm) N(ymj | αk + βk ωj/π , σ 2),

(5)

where the kth weight at the mth location is defined as in (4)
in terms of increments of a logit-normal distribution function,
with mean function, μm(ωj) = ζm + φm ωj/π , and precision
parameter, τm, that are time series specific. Again, θ collects all
model parameters: the intercept and slope parameters of the K
mixture components means, α = {αk : k = 1, . . . , K} and β =
{βk : k = 1, . . . , K}, the common variance parameter σ 2, and
the mixture weights parameters, ζ = {ζm : m = 1, . . . , M}, φ =
{φm : m = 1, . . . , M}, and τ = {τm : m = 1, . . . , M}. Posterior
simulation is implemented using the augmented version of the
model based on MN normally distributed auxiliary variables,
rmj, for m = 1, . . . , M and j = 1, . . . , N. In particular,

ymj | rmj, α, β , σ 2 ind.∼
K∑

k=1
N(ymj | αk + βk ωj/π , σ 2)

× I

{
(k − 1)/K <

exp(rmj)

1 + exp(rmj)
≤ k/K

}

rmj | ξm
ind.∼ N(rmj | ζm + φm ωj/π , 1/τm).

Technical details on the Gibbs sampler used to implement the
hierarchical model are given in Appendix B.

The full Bayesian model is completed with priors for α, β ,
and σ 2, and a hierarchical prior for the (ζm, φm) and τm, for
m = 1, . . . , M. The weight parameters are assumed a priori
independent of the Gaussian mixture component parameters.
We assume σ 2 ∼ inv-gamma(nσ 2 , dσ 2), that is, an inverse
gamma prior (with mean dσ 2/(nσ 2 − 1), and nσ 2 > 1), αk ∼
N(μ0α , σ 2

α), and βk ∼ N(μ0β , σ 2
β), for k = 1, . . . , K. The

hierarchical prior is given by

(ζm, φm) | μw, 
w
ind.∼ N(μw, 
w), m = 1, . . . , M,

τm | dτ
ind.∼ gamma(nτ , dτ ), m = 1, . . . , M,

where gamma(n, d) denotes the gamma distribution with mean
n/d. To borrow strength across the time series, we place a bivari-
ate normal prior on μw, and an inverse Wishart prior on the
covariance matrix 
w. For the τm, we fix the shape parameter,
nτ , and place a gamma prior on the rate parameter, dτ .

The prior on the intercept parameters, αk, summarizes infor-
mation about the spectral density value near ω = 0, while
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the prior on the slope parameters, βk, can be used to express
beliefs about the shape of the spectral density. For instance, for
multimodal spectral densities, we expect some selected βk to
be positive and some negative, whereas for unimodal spectral
densities, we expect all the selected βk to have the same sign.
The parameters ζm and φm, for m = 1, . . . , M, determine
the location of the modes of the weights corresponding to the
mth spectral density, while the τm are smoothness parameters
with smaller values favoring smoother spectral densities. Given
the model structure that involves common parameters for the
mixture components, inferences for the (ζm, φm) are useful in
identifying groups of time series with similar spectral char-
acteristics. This is demonstrated with the data illustrations of
Sections 3 and 4.

In this work, the number of mixture components, K, is fixed.
The modeling approach can be generalized to a random K, albeit
at the substantial expense of a more computationally challeng-
ing posterior simulation method. There is a growing literature
on the roles of the total number of mixture components, K, and
the number of effective (active) components, K̃ ≤ K, in finite
mixture models and nonparametric mixture models (e.g., Miller
and Harrison 2018). Our modeling approach is based on smooth
mixtures in which both mixture weights and means depend
on a covariate (the frequency in our case). To our knowledge,
there is no literature that provides a comprehensive study on
the role of K and K̃ in smooth mixtures. The values of the weight
parameters, together with K, determine how many components,
K̃ ≤ K, are effectively used by the model. Because of the
smoothness, different subsets of the support can have a different
number of components which are “practically” different from
zero. Here, we consider K̃ as the number of components which
are (essentially) not equal to zero over the entire support.

Based on extensive empirical investigation with several
datasets, including the ones in Section 3, we have observed that,
in general, a relatively small number of mixture components
suffices to capture different spectral density shapes, with
inference results being robust to the choice of K. For instance,
for the synthetic data from an AR(2) process with modulus 0.95
and frequency 2.07 (first set of time series for the simulation
scenario of Section 3.2), point and interval estimates for the
log-spectral density were essentially identical for K = 20, 30, 50.
Moreover, the posterior distribution for K̃ concentrated most
of its probability mass on values from 5 to 8 (the posterior
mode being at 6), and, importantly, this distribution was largely
unaffected under K = 30 and K = 50.

3. Simulation Study

In order to assess the performance of the proposed modeling
approach, we designed three different data generating mech-
anisms that represent three hypothetical scenarios involving
multiple related time series. In each scenario, we have M =
15 time series. Moreover, we consider replicates, meaning that
more than one time series is generated from the same underlying
process. (Although results are not shown, we also considered
a setting involving M = 5 time series mutually different from
each other, two AR(1) processes, two AR(2) processes, and white
noise. The model captured successfully the different spectral
density shapes, albeit, as expected, with wider posterior uncer-

tainty bands than the ones reported here.) For each time series,
we simulated n = 300 time points, leading to N = 149
observations from the log-periodogram. In addition to poste-
rior estimates and credible intervals for the spectral densities, we
investigate the posterior distribution of the weight parameters,
ζm, φm, and τm, for m = 1, . . . , M, which can be useful in
identifying similar spectral characteristics across multiple time
series.

To evaluate differences between two spectral densities, we
use the concept of total variation distance (TVD) for normalized
spectral densities. The total variation is a distance measure for
probability distributions and it has been used to quantify the
distance between two spectral densities, after normalization
(e.g., Euan, Ombao, and Ortega 2015). In particular, the TVD
between two normalized spectral densities f ∗ = f /

∫
�

f (ω)dω

and g∗ = g/
∫
�

g(ω)dω, where � = (0, π), is defined
as TVD(f ∗, g∗) = 1 − ∫

�
min{f ∗(ω), g∗(ω)}dω. This is

equivalent to half of the L1 distance between f ∗ and g∗, that
is, TVD(f ∗, g∗) = ||f ∗ − g∗||1/2. We use the TVD as a
measure of discrepancy between spectral densities because it
is symmetric and bounded between 0 and 1, with the value
of 1 corresponding to the largest possible distance between
the normalized spectral densities. Moreover, it can be proved

that if log fk
Lp(0,π)−→ log f , then fk/

∫
fk(ω)dω

TVD−→ f /
∫

f (ω)dω

(see Lemma 2 in Appendix A). Under a Bayesian modeling
approach, we have a posterior distribution for the TVD of any
two given spectral densities. We use the posterior distributions
of the TVDs to compare the inferred spectral densities of
multiple time series, as illustrated in the analyses of simulated
and real data shown below.

3.1. First Scenario

The goal of this simulated scenario is to evaluate the perfor-
mance of our model for time series with monotonic spectral
densities, and also to test if the model is able to recognize
white noise. In order to compare our posterior estimates to the
true spectral densities, we simulated data from processes with
spectral densities available in analytical form. We considered
three underlying generating processes, with five replicates in
each case, leading to a total of M = 15 time series. The first
five time series were generated from an autoregressive process
of order one, or AR(1) process, with parameter 0.9. The next
five time series (labeled from 6 to 10) were generated from an
AR(1) process with parameter 0.5. Finally, the last five time
series were generated from pure white noise, or equivalently an
AR(1) process with parameter 0. Hence, the underlying spectral
densities for the first two groups are monotonic decreasing. The
spectral density corresponding to the first five time series has
a larger slope and is less noisy, while the one corresponding to
the second group has smaller slope and more variability in the
periodogram realizations. The spectral density for the last five
time series is a constant at one, that corresponds to the variance
of the white noise.

We fixed the number of mixture components to K = 30; sim-
ilar results were obtained with a larger value of K. We assumed
αk and βk to be independent normally distributed centered at
zero with variance 1000 such that the linear basis can have a
wide range of motion. For the common variance parameters,
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Figure 1. First simulation scenario. Joint posterior densities for (ζm , φm) (top left panel), marginal prior density (dashed line) and posterior densities for τm (top right
panel), for m = 1, . . . , M, and boxplots of posterior samples for the TVD of each estimated spectral density from the white noise spectral density (bottom panel).

we used an inverse gamma prior with mean 3 and variance 9.
For the smoothness parameters τm, m = 1, . . . , M, we fixed
the shape parameter to 30 and placed a gamma(3, 20) on the
rate parameter. This results in a marginal prior distribution for
each τm that supports a large interval on the positive real line.
Moreover, since each time series has its own smoothness param-
eter, we can have different levels of smoothness for different
spectral densities. The hyper-prior on the mean parameter was
centered at 0 and had variance 10, while the Inverse Wishart
distribution parameters were chosen in a way that the marginal
distributions for the diagonal elements were inv-gamma(3, 3),
and the implied prior distribution on the correlation between
ζm and φm was diffuse on (0, 1).

Figure 1 shows the joint posterior densities for (ζm, φm) (top
left panel) and the prior and posterior densities for τm (top right
panel) for m = 1, . . . , M. The color red corresponds to the
first five time series, the blue to the time series from sixth to
tenth, and the green one to the last five time series. Clearly, the
joint posterior distribution of (ζm, φm) allows us to accurately
identify the three groups. In addition, we notice that there is a
pattern in the posterior distribution: the steeper the slope of the

spectral density (i.e., the larger the AR coefficient), the larger
the value of ζm/φm, which determines the shape of the posterior
spectral density estimates. The posterior distributions of the τm
parameters that determine the smoothness of the spectral den-
sities do not show a clear distinction among the three groups.
Figure 1 (bottom panel) shows the posterior distributions of the
TVDs with respect to the true white noise spectral density. As
expected, the distances for the time series in the third group are
the smallest. In addition, the TVD results support the clustering
among the spectral densities identified through the posterior
distribution of the (ζm, φm). Figure 2 shows the true log-spectral
densities, as well as the corresponding posterior mean estimates
and 95% credible intervals. The model adequately captures the
different log-spectral density shapes and is successful in dis-
cerning noisy processes with corresponding monotonic spectral
densities from pure white noise processes.

3.2. Second Scenario

The first scenario dealt with monotonic spectral densities. Here,
we test model performance in the case of multiple unimodal
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Figure 2. First simulation scenario. Posterior mean estimates (solid lines) and 95% credible intervals (shaded regions) for each log-spectral density. Each panel includes
also the true log-spectral density (dashed line) and the log-periodogram (dots).

spectral densities. A unimodal spectral density shows a single
major peak at a particular frequency. For example, processes
with corresponding unimodal spectral densities are second-
order quasi-periodic autoregressive processes with one domi-
nating frequency. We generated a set of M = 15 time series
from two different AR(2) processes. The first eight time series
were simulated from an AR(2) process with modulus 0.95 and
frequency ω = 2.07, while the last seven time series were
simulated from an AR(2) process with the same modulus of 0.95
but with frequency ω = 1.08. Hence, the time series contain
essentially the same amount of information (the modulus was
0.95 in both groups) and have a single quasi-periodic compo-
nent, with dominating frequency ω = 2.07 for the first group,
and ω = 1.08 for the second group.

We applied again the model with K = 30 components,
and with the same prior specification used in the first scenario
for all parameters, except for the hyperparameter that controls
the smoothness of the estimates. Since we expect less smooth
spectral densities than the first scenario, we fix the shape param-
eter of the gamma prior on τm to 60 for all m, and place a
gamma(10, 300) hyperprior on the rate parameter. This results
in a marginal prior distribution for the τm that has support on
relatively large values.

Figure 3 shows the joint posterior densities for (ζm, φm) (left
panel) and the posterior densities for τm (right panel), together
with the prior marginal density for τm, for m = 1, . . . , M. The
color red corresponds to the first eight time series and the blue to
the last seven time series. Since parameters (ζm, φm) determine
the location of the peak for each time series, the posterior
densities of (ζm, φm) show a clear separation of the parameters
relative to the two groups. The posterior densities of the τm
parameters are similar for all the time series, as expected, since
the peak has the same amplitude. Figure 4 shows the posterior
mean estimates and 95% credible intervals for the log-spectral
densities. The log-periodograms and true log-spectral densities
are also shown. Our model adequately captures the distinct log-
spectral density shapes and successfully identifies the peaks of
the quasi-periodic components for the two types of processes.

3.3. Third Scenario

In this scenario, all M = 15 simulated time series share an
underlying first-order autoregressive component, and some of
them present an additional second-order autoregressive compo-
nent. Specifically, the first five time series were simulated from
an AR(1) with parameter 0.9. The next five time series were



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1845

Figure 3. Second simulation scenario. Joint posterior densities for (ζm , φm) (left panel) and for τm (right panel), for m = 1, . . . , M. The right panel includes also the
marginal prior density (dashed line) for the τm .

Figure 4. Second simulation scenario. Posterior mean estimates (solid lines) and 95% credible intervals (shaded regions) for each log-spectral density. Each panel includes
also the true log-spectral density (dashed line) and the log-periodogram (dots).
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Figure 5. Third simulation scenario. Joint posterior densities for (ζm , φm) (top left panel), marginal prior density (dashed line) and posterior densities for τm (top right
panel), for m = 1, . . . , M, and boxplots of posterior samples for the total variation distance of each estimated spectral density from the AR(1) spectral density (bottom
panel).

simulated from a sum of two autoregressive processes, an AR(1)
and an AR(2). The AR(1) process has parameter 0.9, as in the
previous set of time series, while the AR(2) process was assumed
to be quasi-periodic, with modulus 0.83 and argument ω =
1.54. The last five time series were again simulated from a sum of
an AR(1) process and an AR(2) process. The AR(1) process has
parameter 0.9 as before, whereas the AR(2) was a quasi-periodic
process with modulus 0.97 and argument ω = 1.54. In the
second and third groups, the spectral densities show an initial
decreasing shape and a peak corresponding to the argument
ω = 1.54. While the argument is the same, the modulus is larger
in the third group, hence the peak is more pronounced.

We applied the model with K = 30 mixture components,
using the same prior specification as in the second scenario,
because we expected similar smoothness for the spectral densi-
ties. Figure 5 shows the joint posterior densities for (ζm, φm) (top
left panel) and the posterior densities for τm (top right panel),

for m = 1, . . . , M. The color red identifies the first five time
series, the blue the time series from sixth to tenth, and the green
the last five time series. The posterior distributions for (ζm, φm)

cluster into two groups, the time series corresponding to the
AR(1) process and the time series corresponding to the sum
of AR(1) and AR(2) processes. However, as expected, it is hard
to differentiate between the two groups of time series generated
from the sum of AR(1) and AR(2) processes, because they share
the same periodicities, with only the moduli being different.
The boxplots in Figure 5 summarize the posterior distributions
of the total variation distances between the estimates and the
spectral density of an AR(1) model with parameter 0.9, which
corresponds to the true spectral density for the first set of
five time series. As expected, the posterior distribution of the
total variation distance for the first five time series is concen-
trated around smaller values. Also as expected, there is no clear
distinction between the second and the third group. Figure 6
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Figure 6. Third simulation scenario. Posterior mean estimates (solid lines) and 95% credible intervals (shaded regions) for each log-spectral density. Each panel includes
also the log-periodogram (dots).

displays the posterior mean estimates and 95% credible intervals
for the log-spectral densities. As with the previous simulation
examples, the model successfully recovers the different spectral
density shapes and identifies the peak of the quasi-periodic
component for the last ten time series.

4. Application: Electroencephalogram Data

Multichannel EEG recordings arise from simultaneous mea-
surements of electrical fluctuations induced by neuronal activity
in the brain, using electrodes placed at multiple sites on a
subject’s scalp. One application area in which EEG recordings
have proved very useful is the study of brain seizures induced by
ECT as a treatment for major depression. The time series studied
here are part of a more extensive study. Further details and
data analyses can be found in West, Prado, and Krystal (1999)
and Krystal, Prado, and West (1999). EEGs were recorded at
19 locations over the scalp of one subject that received ECT.
The original sampling rate was 256 Hz. We consider first 300
observations from a mid-seizure portion, after subsampling the
electroencephalogram signals every sixth observation. We refer
to this dataset as ECT data 1.

We applied our model to these 19 time series, using K = 50
mixture components. Similar results were obtained using a
larger number of components. The priors on the parameters
were defined as in the second and third simulated scenarios
above. Figure 7 shows the joint posterior densities for (ζm, φm),
for the 19 channels. The configuration of the plots shown in

the figure aims to provide a schematic representation of the
physical location of the electrodes over the subject’s scalp. For
example, the first row of the plots represents the frontmost
electrodes on the patient’s scalp (Fp1 and Fp2 ) viewed from
above. Overall, there is no clear distinction of the posterior
distributions among the various channels. However, in certain
regions of the brain the posterior distributions of the (ζm, φm)

are concentrated around values similar to the those obtained
from locations in that same region (e.g., channels Cz, Pz, P3,
and C3). On the other hand, some channels that are next to each
other show differences in their posterior distributions (e.g., Cz
and C4). Figure 8 shows the posterior mean estimates and the
corresponding 95% posterior credible intervals for the spectral
densities along with the log-periodograms. All the channels
show a peak around 3.3–3.5 Hz for these series taken from the
central portion of the EEG signals. These results are consistent
with previous analyses which indicate that the observed quasi-
periodicity is dominated by activity in the delta frequency range,
that is, in the range from 1 to 5 Hz (West, Prado, and Krystal
1999; Prado, West, and Krystal 2001). The peak is slightly shifted
to the left in the temporal channels with respect to the frontal
channels. This aspect is also consistent with previous analyses.
To quantify the differences among spectral densities, we chose
to compare each density to the one in the central channel, Cz,
as this channel has been used as a reference channel in previous
analyses (Prado, West, and Krystal 2001). Figure 9 shows the
posterior distributions of the TVDs between the spectral density
estimates at each channel and that for the reference channel
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Figure 7. ECT data 1. Joint posterior densities for (ζm , φm), m = 1, . . . , 19.

Cz. We can clearly see a correspondence between the posterior
distribution of the weight parameters and the spectral density
estimates. Figures 7 and 9 suggest that channels P3, Pz, C3,
are the ones that share the most similar spectral features with
channel Cz.

The analysis above shows that, although there are some
differences across the time series recorded at different locations
for the same time period, all the locations share similar features
with respect to the location of the peak in their estimated log-
spectral densities. We now show that our method can effectively
capture differences in the spectral content of EEG time series
that were recorded during different time periods over the course
of the ECT induced seizure. To this end, we use the same
dataset described above, but analyze time series recorded only
in five channels, specifically, channels C3, Fz, Cz, Pz, and C4,
at three different temporal intervals (we refer to this dataset
as ECT data 2). The first temporal interval corresponds to the
beginning of the seizure, the second one is the interval con-
sidered in the previous analysis which corresponds to a mid-
seizure period, while the third one was recorded later in time,
when the seizure was fading. We emphasize that this is only an

illustrative example to study if our method is able to capture
different spectral characteristics in multiple EEGs. This is not
the ideal model for this more general data structure, as we are
not taking into account the fact that we have three different time
periods. We analyze the 15 EEGs corresponding to five channels
for three different time periods, using the model with K = 50
mixture components and the same prior specification described
above. Figure 10 shows the joint posterior densities for (ζm, φm)

and τm, for the 15 time series. The five series in the first time
period (plotted in red color) are essentially indistinguishable
in terms of the distributions of (ζm, φm), while the series that
correspond to mid (blue color) and later (green color) portions
of the induced seizure display more variability. Figure 11 shows
the posterior mean estimates of the log-spectral densities and
the corresponding 95% posterior credible intervals along with
the log-periodograms. In this case, there is a clear distinction
in the posterior distributions of the time series corresponding
to different time periods. In fact, the peak in the log-spectral
density is more pronounced for those series that correspond to
the beginning of the seizure. The peak shifts to the left and its
power decreases in the successive time periods. In particular,



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1849

Figure 8. ECT data 1. Posterior mean estimates (solid lines) and 95% credible intervals (shaded regions) for the log-spectral densities corresponding to the 19 channels.
Each panel includes also the log-periodogram (dots) from the specific channel.

Figure 9. ECT data 1. Boxplots of posterior samples for the total variation distances between the spectral densities for each channel and the spectral density of the reference
channel Cz .
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Figure 10. ECT data 2. Joint posterior densities for (ζm , φm) (left panel) and τm (right panel), for m = 1, . . . , 15. The right panel includes also the marginal prior density
(dashed line) for the τm .

Figure 11. ECT data 2. Log-periodograms (dots), posterior mean estimates (solid lines), and 95% credible intervals (shaded regions) for the log-spectral densities
corresponding to the 15 time series obtained from five channels for three time periods: beginning of the seizure (top row), mid-seizure (middle row), and end of the
seizure (bottom row).
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in the last time period, the power of the peaks is the lowest
and the variability in the log-periodogram observations and
the estimated log-spectral densities is larger. There is also an
increase of spectral variability over the time periods. These
findings are consistent with previous analyses of these data,
using nonstationary time-varying AR models (West, Prado, and
Krystal 1999; Prado, West, and Krystal 2001).

5. Discussion

We have developed methodology for the analysis and estimation
of multiple time series in the spectral domain. We note again
that the methodology is developed for multiple, not multivari-
ate, time series. This is a problem receiving some attention in
the recent literature, but there is generally a shortage of Bayesian
methods that deal jointly and efficiently with multiple time
series in the spectral domain. Methods for multivariate time
series analysis are available, but often have the drawback of high
computational cost, and are applicable in practice to a limited
number of dimensions (rarely higher that 2–3). Our approach
is based on replacing the Whittle approximation implied log-
periodogram distribution with a mixture of Gaussian distribu-
tions with frequency-dependent weights and mean functions,
which results in a flexible mixture model for the correspond-
ing log-spectral density. The main idea for a single unidimen-
sional time series was presented in Cadonna, Kottas, and Prado
(2017), where logistic weights were used. Here, the mixture
weights are built through differences of a distribution function,
resulting in a substantially more parsimonious specification
than logistic mixture weights. This is a fundamental feature
of the proposed model, as it naturally leads to a hierarchical
extension that allows us to efficiently consider multiple time
series and borrow strength across them. As an additional advan-
tage, casting the spectral density estimation problem in a mix-
ture modeling framework allows for relatively straightforward
implementation of a Gibbs sampler for inference. The pro-
posed modeling approach is parsimonious without sacrificing
flexibility. Through simulation studies, we have demonstrated
the ability of the model to uncover both monotonic and mul-
timodal spectral density shapes, as well as white noise. We
also applied the methodology to multichannel EEG recordings,
obtaining results that are in agreement with neuroscientists’
understanding.

The Whittle likelihood is exact only for Gaussian white
noise, but leads to asymptotically correct estimation for both
Gaussian and non-Gaussian time series (e.g., Hannan 1973).
However, Whittle likelihood based estimation may result
in loss of efficiency for small sample sizes, both for non-
Gaussian time series and for highly autocorrelated Gaussian
time series (e.g., Contreras-Cristan, Gutierrez-Pena, and Walker
2006). The Whittle approximation involves an assumption
of asymptotic independence between Fourier coefficients, as
well as the assumption of a stationary Gaussian time series.
To relax the former assumption, Kirch et al. (2017) propose
a nonparametric correction, based on Bernstein polynomial
priors, of a parametric likelihood (focusing on AR(p) models
for the parametric likelihood).

Our methodology relies on the asymptotic independence of
the In(ωj), but uses the Whittle log-periodogram distribution
only to the extent that E[log(In(ω))] is asymptotically equal to
log(f (ω)) − γ . Hence, it has the potential to enhance the scope
of Whittle likelihood based inference for non-Gaussian time
series. Such potential can be further explored through models
that build from the assumption E[In(ω)] = f (ω), which holds
asymptotically for zero-mean, weakly stationary time series.
In the context of our modeling framework, we would now
seek mixture models (again, with frequency-dependent mix-
ture weights and kernel component parameters) directly for the
periodogram distribution. Then, the expectation of the mixture
distribution would provide the spectral density model. Here,
the choice of the mixture kernel and/or mixture weights would
need to balance desirable theoretical results for the mixture
distribution and its expectation with appropriate structure for
the implied spectral density that corresponds to specific classes
of time series. In particular, as suggested by a reviewer, it will
be of interest to extend the approach to model spectral den-
sities for long-range dependent time series, for which existing
Bayesian methods include Liseo, Marinucci, and Petrella (2001)
and Chopin, Rousseau, and Liseo (2013).

Extending the methodology for nonstationary time series is
another interesting direction. As the last ECT example shows
the frequency content is different in the different time intervals.
Ideally, we would like to have a model that allows us to infer
time-varying spectral characteristics in multiple time series.
Classical spectral analysis is based on the assumption of weak
stationarity. Such an assumption is often not satisfied, especially
when we need to analyze long time series, and the covariance
properties vary over time. This is equivalent to saying that the
distribution of power over frequency changes as time evolves.
Future research will focus on expanding our hierarchical spec-
tral model in such a way that the evolution of the spectral con-
tent over time can also be included, with the goal of estimating
time-varying spectral densities.

Appendix A. Theoretical Results

For simpler notation, and without loss of generality, we consider from
the outset the normalized frequency range, such that ω ∈ � =
(0, 1). However, the results are valid for any bounded interval on the
real line. We show that a smooth function h on � = (0, 1) can
be approximated by a local mixture of linear functions, hK(ω) =∑K

k=1 gk(μ(ω), τ){αk + βkω}, with weights

gk(μ(ω), τ) = 1√
2π

∫ (bk−μ(ω))
√

τ

(bk−1−μ(ω))
√

τ
exp(−x2/2) dx, (A.1)

with bk = log{k/(K−k)}, bk−1 = log{(k−1)/(K−k+1)}, and μ(ω) =
ζ + φω.

Let
∥∥f

∥∥
p =

(∫ 1
0 |f (ω)|pdP(ω)

) 1
p denote the Lp norm, where P is an

absolutely continuous distribution on �. Moreover, denote by χB the
indicator function for B ⊆ �. Let a and b be two integers, with b > a,
and define the partition {Qa+1, . . . , Qb} of � = (0, 1), with Qa+1 =(

0, 1
b−a

)
and Qk =

[
k−a−1

b−a , k−a
b−a

)
, for k = a+2, . . . , b. Each element

of the partition has length 1/(b − a). The following lemma is used to
obtain the main result.
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Lemma 1. Let gk(μ(ω), τ) be the kth weight as defined in (A.1). Then,
there exist values for ζ and φ, and integers k1 and k2, with k2 > k1,
such that, for k = k1 + 1, . . . , k2, limτ→∞ ||gk − χQk ||p = 0, for any
p ∈ N. Moreover, for 1 < k ≤ k1 or k2 < k ≤ K, limτ→∞ ||gk||p = 0,
for any p ∈ N.

Proof. Based on the form of the mixture weights in (A.1), for any fixed
ω, and for any k = 1, . . . , K, we have

lim
τ→∞ gk(μ(ω), τ)

=
⎧⎨
⎩

1 log
(

k − 1
K − k + 1

)
≤ μ(ω) < log

(
k

K − k

)

0 o.w.

and thus

lim
τ→∞ gk(μ(ω), τ) =

⎧⎨
⎩

1
k − 1

K
≤ exp(μ(ω))

1 + exp(μ(ω))
<

k
K

0 o.w.

We can find values of ζ and φ > 0, and integers k1 and k2,
with k2 > k1, such that exp(μ(0))/{1 + exp(μ(0))} = k1/K and
exp(μ(1))/{1 + exp(μ(1))} = k2/K, and such that we can build
a linear approximation of exp(μ(ω))/{1 + exp(μ(ω))}, specifically,
given by (k1/K) + {(k2 − k1)/K}ω. Therefore, the partition induced
on � is {(0, 1/(k2 − k1)), [1/(k2 − k1), 2/(k2 − k1)), . . . , [(k2 − k1 −
1)/(k2 −k1), 1)}. From the limiting result above, for k = k1 +1, . . . , k2,
we have gk(μ(ω), τ) → χQk(ω), almost surely, as τ → ∞. In
addition, for 0 < k ≤ k1 or k2 < k ≤ K, gk(μ(ω), τ) → 0,
almost surely, as τ → ∞. Moreover, for k = k1 + 1, . . . , k2,
|gk(μ(ω), τ) − χQk(ω)|p ≤ 1, for ω ∈ (0, 1), and for 0 < k ≤ k1
or k2 < k ≤ K, |gk(μ(ω), τ)|p ≤ 1, for ω ∈ (0, 1). Hence,
from the dominated convergence theorem, for k = k1 + 1, . . . , k2,
limτ→∞ ||gk − χQk ||p = 0, for any p ∈ N. Finally, for 1 < k ≤ k1 or
k2 < k ≤ K, we have that limτ→∞ ||gk||p = 0, for any p ∈ N.

Based on Lemma 1, the local mixture weights approximate the set
of indicator functions on the partition {Qk1+1, . . . , Qk2 }, for any fixed
K, k1 and k2, with k2 > k1. The following result establishes that the
distance in the Lp norm between the target log-spectral density, h,
and the proposed mixture model hK is bounded by a constant that is
inversely proportional to the square of K∗ = k2 − k1 < K.

Theorem. Let h ∈ W∞
2,K0

, that is, the Sobolev space of continuous
functions bounded by K0, with the first two derivatives continuous and
bounded by K0. Then, infhK ‖hK − h‖p ≤ K0/(2K∗2).

Proof. We start by proving that, for fixed K, k1 and k2, with k2 > k1,
any h ∈ W∞

2,K0
can be approximated by a piecewise linear function

on the partition {Qk1+1, . . . , Qk2 }, with the Lp distance bounded by
a constant that depends on K∗ = k2 − k1. For each interval Qk,
k = k1 + 1, . . . , k2, consider a point ω∗

k ∈ Qk and the linear approx-
imation based on the first-order Taylor series expansion: ĥk(ω) =
α̂k + β̂kω, for ω ∈ Qk, where α̂k = h(ω∗

k ) − ω∗
k h′(ω∗

k ) and β̂k =
h′(ω∗

k ); here, h′(ω∗
k ) denotes the first derivative of h(ω) evaluated at

ω∗
k , with similar notation used below for the second derivative. We

have
∥∥∥{∑k2

k=k1+1 χQk ĥk
}

− h
∥∥∥

p
=

∥∥∥∑k2
k=k1+1 χQk

{
ĥk − h

}∥∥∥
p

≤
supk1+1≤k≤k2

∥∥∥ĥk − h
∥∥∥∞, where ‖‖∞ denotes the L∞ norm. Now, for

each interval Qk, we consider the second-order expansion of h around
the same ω∗

k ∈ Qk. Note that the partition {Qk1+1, . . . , Qk2 } satisfies
the property that, for any k, and for any ω1 and ω2 in Qk, |ω1 − ω2| ≤
1/K∗. Using this property and the fact that the second derivative of h is
bounded by K0, we obtain |ĥk(ω) − h(ω)| ≤ |0.5(ω − ω∗

k )2h′′(ω∗
k )| ≤

K0/(2K∗2). Therefore,
∥∥∥{∑k2

k=k1+1 χQk ĥk
}

− h
∥∥∥

p
≤ K0/(2K∗2).

Using the triangular inequality, we can write
∥∥∥∥∥∥

⎧⎨
⎩

k2∑
k=k1+1

gkĥk

⎫⎬
⎭ − h

∥∥∥∥∥∥
p

≤
∥∥∥∥∥∥

k2∑
k=k1+1

{
gk − χQk

}
ĥk

∥∥∥∥∥∥
p

+
∥∥∥∥∥∥

⎧⎨
⎩

k2∑
k=k1+1

χQk ĥk

⎫⎬
⎭ − h

∥∥∥∥∥∥
p

.

Based on the previous result, the second term is bounded by
K0/(2K∗2). For the first term,

∥∥∥∑k2
k=k1+1

{
gk − χQk

}
ĥk

∥∥∥
p

≤
∑k2

k=k1+1
∥∥gk − χQk

∥∥
p

∥∥∥ĥk
∥∥∥∞ . Using Lemma 1 and the fact that

|ĥk(ω)| ≤ |h(ω∗
k )| + |h′(ω∗

k )(ω − ω∗
k )|≤ 2K0, we have that the first

term is bounded by 2εK∗K0, for any ε > 0 given sufficiently large τ .
Finally,

∥∥∥{∑K
k=1 gkĥk

}
− h

∥∥∥
p

≤ 2εK∗K0 + {K0/(2K∗2)}, and letting

ε tend to zero, we obtain the result.

Lemma 2. Let fk be a sequence of functions and f be a function defined
on (0, π). Let Lp(0, π) denote Lp convergence on (0, π), and let TVD

denote convergence in the total variation distance. If log fk
Lp(0,π)−→ log f ,

then fk/
∫ π

0 fk(ω)dω
TVD−→ f /

∫ π
0 f (ω)dω.

Proof. If log fk
Lp(0,π)−→ log f , then fk

Lp(0,π)−→ f , for any 1 ≤ p < ∞,
because the exponential transformation preserves the Lp convergence
on a set of finite measure. Assume, without loss of generality, that∫ π

0 f (ω)dω �= 0. We need to prove that
∫ π

0 fk(ω)dω → ∫ π
0 f (ω)dω.

We have that∣∣∣∣
∫ π

0
f (ω)dω

∣∣∣∣ −
∫ π

0
|fk(ω)|dω ≤

∫ π

0
|f (ω) − fk(ω)|dω

= ||f − fk||L1 .

The last term tends to zero based on Holder’s inequality. Recall that, if
we have a sequence of constants ck, such that ck → c and a sequence of

functions fk, such that fk
Lp(0,π)−→ f , then ckfk

Lp(0,π)−→ cf . Setting c−1
k =

∫ π
0 fk(ω)dω and c−1 = ∫ π

0 f (ω)dω, we obtain fk/
∫ π

0 fk(ω)dω
Lp(0,π)−→

f /
∫ π

0 f (ω)dω. Again, from Holder’s inequality, Lp convergence implies
L1 convergence, which is equivalent to convergence in the TVD.

Appendix B. MCMC Details for the Hierarchical Model

Here, we present the details of the Gibbs sampler that can be used
for posterior simulation from the hierarchical model developed in
Section 2.2. Again, in the following notation, we assume that the ωj
have been normalized such that ωj ∈ (0, 1).

The full conditional distribution for each configuration variable
rmj, m = 1, . . . M, j = 1, . . . , N, is a piecewise Gaussian distributed on
[log((k − 1)/(K − k + 1)), log(k/(K − k))] with weights

wk = gk(μm(ωj), τm)N(ymj | αk + βkωj, σ 2)∑K
i=1 gi(μm(ωj), τm)N(ymj | αi + βiωj, σ 2)

,

for k = 1, . . . , K.
We sample (αk, βk) jointly, for k = 1, . . . , K. Let μ = (μα , μβ)′ and


0 the diagonal matrix that has σ 2
α and σ 2

β as diagonal terms. The full



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1853

conditional distribution is a bivariate normal with covariance matrix


∗ = σ 2
( ∑

m,j: k−1
K <

exp(rmj)
1+exp(rmj)

≤ k
K

zjz′
j + 
−1

0

)−1
and mean

μ∗ = 
∗
(


−1
0 μ0 + ∑

m,j: k−1
K <

exp(rmj)
1+exp(rmj)

≤ k
K

ymjzj

)
, where

zj = (1, ωj)′.
We sample (ζm, φm) jointly, for m = 1, . . . , M. The full

conditional distribution is a bivariate normal with covariance
matrix 
∗

w =
(
σ−2 ∑N

j=1 qjq′
j + 
−1

w
)−1

and mean μ∗
w =


∗
w

(∑N
j=1 rmjqj + 
−1

w μw
)

, where qj = (1, ωj)′.
The full conditional for the common variance parameter

σ 2 follows an inverse-gamma distribution with para-
meters n∗ and d∗, where n∗ = nσ 2 + 0.5NM and d∗ =
dσ 2 + 0.5

∑M
m=1

∑N
j=1

∑K
k=1(ymj − (αk + βkωj))2)

I

(
k−1

K <
exp(rmj)

(1+exp(rmj))
≤ k

K

)
.

The full conditional for τm, m = 1, . . . , M is gamma with parame-
ters nτ + 0.5N and dτ + 0.5

∑N
j=1(rmj − (ζm + φmωj))2.

The full conditional for dτ is a gamma with parameters adτ
+ Mnτ

and bdτ
+ M

∑M
m=1 τm, where adτ

and adτ
are the parameters of the

hyperprior.
The full conditional for μw is a bivariate normal with covariance

matrix 
∗
0 = (
00 + M
w)−1, and mean μ∗

0 = 
∗
0 [
−1

00 μ00 +

−1

w
∑M

m=1(ζm, φm)′], where μ00 is the hyperprior mean and 
00 the
hyperprior covariance matrix.

The full conditional for 
w is an inverse Wishart with ν0 + M
degrees of freedom and scale matrix � + ∑M

m=1[(ζm, φm)′ −
μw][(ζm, φm)′ −μw]′, where ν0 are the hyperprior degrees of freedom
and � is the hyperprior scale matrix.
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