33 research outputs found

    Cerebral Embolic Protection in TAVI: Friend or Foe

    Get PDF
    Cerebrovascular accidents including stroke or transient ischaemic attack are one of the most feared complications after transcatheter aortic valve implantation. Transcatheter aortic valve implantation procedures have been consistently associated with silent ischaemic cerebral embolism as assessed by diffusion-weighted MRI. To reduce the risk of cerebrovascular accidents and silent emboli, cerebral embolic protection devices were developed with the aim of preventing procedural debris reaching the cerebral vasculature. The authors summarise the available data regarding cerebral embolic protection devices and its clinical significance

    Pre-eclampsia is associated with a twofold increase in diabetes : a systematic review and meta-analysis

    Get PDF
    CSK and RH are funded by National Institute for Health Research Academic Clinical Fellowships. This study was supported by a grant from the North Staffs Heart Committee.Peer reviewedPublisher PD

    Routine Left Ventricular Pacing for Patients Undergoing Transcatheter Aortic Valve Replacement

    Get PDF
    ABSTRACTBackground: Rapid ventricular pacing is often required during transcatheter aortic valve replacement (TAVR) procedures. Pacing via the retrograde left ventricular guidewire (LV-GW) is an al..

    Preeclampsia and Future Cardiovascular Health

    Get PDF
    Background—Preeclampsia is a pregnancy-specific disorder resulting in hypertension and multiorgan dysfunction. There is growing evidence that these effects persist after pregnancy. We aimed to systematically evaluate and quantify the evidence on the relationship between preeclampsia and the future risk of cardiovascular diseases.Methods and Results—We studied the future risk of heart failure, coronary heart disease, composite cardiovascular disease, death because of coronary heart or cardiovascular disease, stroke, and stroke death after preeclampsia. A systematic search of MEDLINE and EMBASE was performed to identify relevant studies. We used random-effects meta-analysis to determine the risk. Twenty-two studies were identified with >6.4 million women including >258?000 women with preeclampsia. Meta-analysis of studies that adjusted for potential confounders demonstrated that preeclampsia was independently associated with an increased risk of future heart failure (risk ratio [RR], 4.19; 95% confidence interval [CI], 2.09–8.38), coronary heart disease (RR, 2.50; 95% CI, 1.43–4.37), cardiovascular disease death (RR, 2.21; 95% CI, 1.83–2.66), and stroke (RR, 1.81; 95% CI, 1.29–2.55). Sensitivity analyses showed that preeclampsia continued to be associated with an increased risk of future coronary heart disease, heart failure, and stroke after adjusting for age (RR, 3.89; 95% CI, 1.83–8.26), body mass index (RR, 3.16; 95% CI, 1.41–7.07), and diabetes mellitus (RR, 4.19; 95% CI, 2.09–8.38).Conclusions—Preeclampsia is associated with a 4-fold increase in future incident heart failure and a 2-fold increased risk in coronary heart disease, stroke, and death because of coronary heart or cardiovascular disease. Our study highlights the importance of lifelong monitoring of cardiovascular risk factors in women with a history of preeclampsia

    Acute changes in myocardial tissue characteristics during hospitalization in patients with COVID-19

    Get PDF
    Background: Patients with a history of COVID-19 infection are reported to have cardiac abnormalities on cardiovascular magnetic resonance (CMR) during convalescence. However, it is unclear whether these abnormalities were present during the acute COVID-19 illness and how they may evolve over time. Methods: We prospectively recruited unvaccinated patients hospitalized with acute COVID-19 (n = 23), and compared them with matched outpatient controls without COVID-19 (n = 19) between May 2020 and May 2021. Only those without a past history of cardiac disease were recruited. We performed in-hospital CMR at a median of 3 days (IQR 1–7 days) after admission, and assessed cardiac function, edema and necrosis/fibrosis, using left and right ventricular ejection fraction (LVEF, RVEF), T1-mapping, T2 signal intensity ratio (T2SI), late gadolinium enhancement (LGE) and extracellular volume (ECV). Acute COVID-19 patients were invited for follow-up CMR and blood tests at 6 months. Results: The two cohorts were well matched in baseline clinical characteristics. Both had normal LVEF (62 ± 7 vs. 65 ± 6%), RVEF (60 ± 6 vs. 58 ± 6%), ECV (31 ± 3 vs. 31 ± 4%), and similar frequency of LGE abnormalities (16 vs. 14%; all p > 0.05). However, measures of acute myocardial edema (T1 and T2SI) were significantly higher in patients with acute COVID-19 when compared to controls (T1 = 1,217 ± 41 ms vs. 1,183 ± 22 ms; p = 0.002; T2SI = 1.48 ± 0.36 vs. 1.13 ± 0.09; p  Conclusion: Unvaccinated patients hospitalized for acute COVID-19 demonstrated CMR imaging evidence of acute myocardial edema, which normalized at 6 months, while biventricular function and scar burden were similar when compared to controls. Acute COVID-19 appears to induce acute myocardial edema in some patients, which resolves in convalescence, without significant impact on biventricular structure and function in the acute and short-term. Further studies with larger numbers are needed to confirm these findings

    Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: the ORFAN multicentre, longitudinal cohort study

    Get PDF
    Background: Coronary computed tomography angiography (CCTA) is the first line investigation for chest pain, and it is used to guide revascularisation. However, the widespread adoption of CCTA has revealed a large group of individuals without obstructive coronary artery disease (CAD), with unclear prognosis and management. Measurement of coronary inflammation from CCTA using the perivascular fat attenuation index (FAI) Score could enable cardiovascular risk prediction and guide the management of individuals without obstructive CAD. The Oxford Risk Factors And Non-invasive imaging (ORFAN) study aimed to evaluate the risk profile and event rates among patients undergoing CCTA as part of routine clinical care in the UK National Health Service (NHS); to test the hypothesis that coronary arterial inflammation drives cardiac mortality or major adverse cardiac events (MACE) in patients with or without CAD; and to externally validate the performance of the previously trained artificial intelligence (AI)-Risk prognostic algorithm and the related AI-Risk classification system in a UK population. Methods: This multicentre, longitudinal cohort study included 40 091 consecutive patients undergoing clinically indicated CCTA in eight UK hospitals, who were followed up for MACE (ie, myocardial infarction, new onset heart failure, or cardiac death) for a median of 2·7 years (IQR 1·4–5·3). The prognostic value of FAI Score in the presence and absence of obstructive CAD was evaluated in 3393 consecutive patients from the two hospitals with the longest follow-up (7·7 years [6·4–9·1]). An AI-enhanced cardiac risk prediction algorithm, which integrates FAI Score, coronary plaque metrics, and clinical risk factors, was then evaluated in this population. Findings: In the 2·7 year median follow-up period, patients without obstructive CAD (32 533 [81·1%] of 40 091) accounted for 2857 (66·3%) of the 4307 total MACE and 1118 (63·7%) of the 1754 total cardiac deaths in the whole of Cohort A. Increased FAI Score in all the three coronary arteries had an additive impact on the risk for cardiac mortality (hazard ratio [HR] 29·8 [95% CI 13·9–63·9], p<0·001) or MACE (12·6 [8·5–18·6], p<0·001) comparing three vessels with an FAI Score in the top versus bottom quartile for each artery. FAI Score in any coronary artery predicted cardiac mortality and MACE independently from cardiovascular risk factors and the presence or extent of CAD. The AI-Risk classification was positively associated with cardiac mortality (6·75 [5·17–8·82], p<0·001, for very high risk vs low or medium risk) and MACE (4·68 [3·93–5·57], p<0·001 for very high risk vs low or medium risk). Finally, the AI-Risk model was well calibrated against true events. Interpretation: The FAI Score captures inflammatory risk beyond the current clinical risk stratification and CCTA interpretation, particularly among patients without obstructive CAD. The AI-Risk integrates this information in a prognostic algorithm, which could be used as an alternative to traditional risk factor-based risk calculators

    The Role of Coronary Physiology in Contemporary Percutaneous Coronary Interventions

    No full text
    Invasive assessment of coronary physiology has radically changed the paradigm of myocardial revascularization in patients with coronary artery disease. Despite the prognostic improvement associated with ischemia-driven revascularization strategy, functional assessment of angiographic intermediate epicardial stenosis remains largely underused in clinical practice. Multiple tools have been developed or are under development in order to reduce the invasiveness, cost, and extra procedural time associated with the invasive assessment of coronary physiology. Besides epicardial stenosis, a growing body of evidence highlights the role of coronary microcirculation in regulating coronary flow with consequent pathophysiological and clinical and prognostic implications. Adequate assessment of coronary microcirculation function and integrity has then become another component of the decision-making algorithm for optimal diagnosis and treatment of coronary syndromes.This review aims at providing a comprehensive description of tools and techniques currently available in the catheterization laboratory to obtain a thorough and complete functional assessment of the entire coronary tree (both for the epicardial and microvascular compartments)

    Transcatheter Aortic Valve Replacement Influence on Coronary Hemodynamics: A Quantitative Meta-Analysis and Proposed Decision-Making Algorithm

    No full text
    As transcatheter aortic valve replacement (TAVR) expands to younger and lower-risk severe aortic stenosis patients, appropriate coronary artery disease treatment is key to reducing long-term adverse cardiovascular outcomes. Recently, studies have been exploring the role of coronary-physiology guided revascularization strategies. Our aim was to investigate whether TAVR influences coronary physiology measurements using quantitative meta-analytic methods
    corecore