46 research outputs found
Cerebral Embolic Protection in TAVI: Friend or Foe
Cerebrovascular accidents including stroke or transient ischaemic attack are one of the most feared complications after transcatheter aortic valve implantation. Transcatheter aortic valve implantation procedures have been consistently associated with silent ischaemic cerebral embolism as assessed by diffusion-weighted MRI. To reduce the risk of cerebrovascular accidents and silent emboli, cerebral embolic protection devices were developed with the aim of preventing procedural debris reaching the cerebral vasculature. The authors summarise the available data regarding cerebral embolic protection devices and its clinical significance
Pre-eclampsia is associated with a twofold increase in diabetes : a systematic review and meta-analysis
CSK and RH are funded by National Institute for Health Research Academic Clinical Fellowships. This study was supported by a grant from the North Staffs Heart Committee.Peer reviewedPublisher PD
Routine Left Ventricular Pacing for Patients Undergoing Transcatheter Aortic Valve Replacement
ABSTRACTBackground: Rapid ventricular pacing is often required during transcatheter aortic valve replacement (TAVR) procedures. Pacing via the retrograde left ventricular guidewire (LV-GW) is an al..
Impact of the admitting ward on care quality and outcomes in non-ST-segment elevation myocardial infarction (NSTEMI) : insights from a national registry
Peer reviewedPostprin
Current and emerging osteoporosis pharmacotherapy for women: state of the art therapies for preventing bone loss.
INTRODUCTION: Pharmacological options to address the imbalance between bone resorption and accrual in osteoporosis include anti-resorptive and osteoanabolic agents. Unique biologic pathways such as the Wnt/β-catenin pathway have been targeted in the quest for new emerging therapeutic strategies. Areas covered: This review provides an overview of existing pharmacotherapy for osteoporosis in women and explore state-of-the-art and emerging therapies to prevent bone loss, with an emphasis on the mechanism of action, indications and side effects. Expert opinion: Bisphosphonates appear to be a reliable and cost-effective option, whereas denosumab has introduced a simpler dosing regimen and may achieve a linear increase in bone mineral density (BMD) with no plateau being observed, along with continuous anti-fracture efficacy. Abaloparatide, a parathyroid-hormone-related peptide (PTHrP)-analogue, approved by the FDA in April 2017, constitutes the first new anabolic osteoporosis drug in the US for nearly 15 years and has also proven its anti-fracture efficacy. Romosozumab, a sclerostin inhibitor, which induces bone formation and suppresses bone resorption, has also been developed and shown a significant reduction in fracture incidence; however, concerns have arisen with regard to increased cardiovascular risk
Preeclampsia and Future Cardiovascular Health
Background—Preeclampsia is a pregnancy-specific disorder resulting in hypertension and multiorgan dysfunction. There is growing evidence that these effects persist after pregnancy. We aimed to systematically evaluate and quantify the evidence on the relationship between preeclampsia and the future risk of cardiovascular diseases.Methods and Results—We studied the future risk of heart failure, coronary heart disease, composite cardiovascular disease, death because of coronary heart or cardiovascular disease, stroke, and stroke death after preeclampsia. A systematic search of MEDLINE and EMBASE was performed to identify relevant studies. We used random-effects meta-analysis to determine the risk. Twenty-two studies were identified with >6.4 million women including >258?000 women with preeclampsia. Meta-analysis of studies that adjusted for potential confounders demonstrated that preeclampsia was independently associated with an increased risk of future heart failure (risk ratio [RR], 4.19; 95% confidence interval [CI], 2.09–8.38), coronary heart disease (RR, 2.50; 95% CI, 1.43–4.37), cardiovascular disease death (RR, 2.21; 95% CI, 1.83–2.66), and stroke (RR, 1.81; 95% CI, 1.29–2.55). Sensitivity analyses showed that preeclampsia continued to be associated with an increased risk of future coronary heart disease, heart failure, and stroke after adjusting for age (RR, 3.89; 95% CI, 1.83–8.26), body mass index (RR, 3.16; 95% CI, 1.41–7.07), and diabetes mellitus (RR, 4.19; 95% CI, 2.09–8.38).Conclusions—Preeclampsia is associated with a 4-fold increase in future incident heart failure and a 2-fold increased risk in coronary heart disease, stroke, and death because of coronary heart or cardiovascular disease. Our study highlights the importance of lifelong monitoring of cardiovascular risk factors in women with a history of preeclampsia
Acute changes in myocardial tissue characteristics during hospitalization in patients with COVID-19
Background: Patients with a history of COVID-19 infection are reported to have cardiac abnormalities on cardiovascular magnetic resonance (CMR) during convalescence. However, it is unclear whether these abnormalities were present during the acute COVID-19 illness and how they may evolve over time.
Methods: We prospectively recruited unvaccinated patients hospitalized with acute COVID-19 (n = 23), and compared them with matched outpatient controls without COVID-19 (n = 19) between May 2020 and May 2021. Only those without a past history of cardiac disease were recruited. We performed in-hospital CMR at a median of 3 days (IQR 1–7 days) after admission, and assessed cardiac function, edema and necrosis/fibrosis, using left and right ventricular ejection fraction (LVEF, RVEF), T1-mapping, T2 signal intensity ratio (T2SI), late gadolinium enhancement (LGE) and extracellular volume (ECV). Acute COVID-19 patients were invited for follow-up CMR and blood tests at 6 months.
Results: The two cohorts were well matched in baseline clinical characteristics. Both had normal LVEF (62 ± 7 vs. 65 ± 6%), RVEF (60 ± 6 vs. 58 ± 6%), ECV (31 ± 3 vs. 31 ± 4%), and similar frequency of LGE abnormalities (16 vs. 14%; all p > 0.05). However, measures of acute myocardial edema (T1 and T2SI) were significantly higher in patients with acute COVID-19 when compared to controls (T1 = 1,217 ± 41 ms vs. 1,183 ± 22 ms; p = 0.002; T2SI = 1.48 ± 0.36 vs. 1.13 ± 0.09; p
Conclusion: Unvaccinated patients hospitalized for acute COVID-19 demonstrated CMR imaging evidence of acute myocardial edema, which normalized at 6 months, while biventricular function and scar burden were similar when compared to controls. Acute COVID-19 appears to induce acute myocardial edema in some patients, which resolves in convalescence, without significant impact on biventricular structure and function in the acute and short-term. Further studies with larger numbers are needed to confirm these findings
Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: the ORFAN multicentre, longitudinal cohort study
Background: Coronary computed tomography angiography (CCTA) is the first line investigation for chest pain, and it is used to guide revascularisation. However, the widespread adoption of CCTA has revealed a large group of individuals without obstructive coronary artery disease (CAD), with unclear prognosis and management. Measurement of coronary inflammation from CCTA using the perivascular fat attenuation index (FAI) Score could enable cardiovascular risk prediction and guide the management of individuals without obstructive CAD. The Oxford Risk Factors And Non-invasive imaging (ORFAN) study aimed to evaluate the risk profile and event rates among patients undergoing CCTA as part of routine clinical care in the UK National Health Service (NHS); to test the hypothesis that coronary arterial inflammation drives cardiac mortality or major adverse cardiac events (MACE) in patients with or without CAD; and to externally validate the performance of the previously trained artificial intelligence (AI)-Risk prognostic algorithm and the related AI-Risk classification system in a UK population.
Methods: This multicentre, longitudinal cohort study included 40 091 consecutive patients undergoing clinically indicated CCTA in eight UK hospitals, who were followed up for MACE (ie, myocardial infarction, new onset heart failure, or cardiac death) for a median of 2·7 years (IQR 1·4–5·3). The prognostic value of FAI Score in the presence and absence of obstructive CAD was evaluated in 3393 consecutive patients from the two hospitals with the longest follow-up (7·7 years [6·4–9·1]). An AI-enhanced cardiac risk prediction algorithm, which integrates FAI Score, coronary plaque metrics, and clinical risk factors, was then evaluated in this population.
Findings: In the 2·7 year median follow-up period, patients without obstructive CAD (32 533 [81·1%] of 40 091) accounted for 2857 (66·3%) of the 4307 total MACE and 1118 (63·7%) of the 1754 total cardiac deaths in the whole of Cohort A. Increased FAI Score in all the three coronary arteries had an additive impact on the risk for cardiac mortality (hazard ratio [HR] 29·8 [95% CI 13·9–63·9], p<0·001) or MACE (12·6 [8·5–18·6], p<0·001) comparing three vessels with an FAI Score in the top versus bottom quartile for each artery. FAI Score in any coronary artery predicted cardiac mortality and MACE independently from cardiovascular risk factors and the presence or extent of CAD. The AI-Risk classification was positively associated with cardiac mortality (6·75 [5·17–8·82], p<0·001, for very high risk vs low or medium risk) and MACE (4·68 [3·93–5·57], p<0·001 for very high risk vs low or medium risk). Finally, the AI-Risk model was well calibrated against true events.
Interpretation: The FAI Score captures inflammatory risk beyond the current clinical risk stratification and CCTA interpretation, particularly among patients without obstructive CAD. The AI-Risk integrates this information in a prognostic algorithm, which could be used as an alternative to traditional risk factor-based risk calculators