3 research outputs found
Gene regulation in response to drought in the plant genera Panicum and Quercus
Droughts impair plant growth, limit global net primary production and are predicted to increase in the course of climate change. Knowledge of the plant drought response on a molecular level can facilitate the selection of drought resistant genotypes and genetic engineering and thereby can help to implement strategies, such as assisted migration projects or crop improvement, in order to preserve natural and agricultural vegetation against droughts.
Studies on gene expression under drought stress were conducted in three species each of the genera Quercus and Panicum, to shed light on the molecular drought response in these species and identify drought responsive genes as a basis for technical applications.
In the genus Quercus, gene expression studies were conducted in the three major European forest trees Q. ilex, Q. pubescens and Q. robur, for which a distributional shift caused by climate change is predicted for the 21st century. RNA-Seq experiments were conducted in the three Quercus species for the first time, ortholog groups were assigned and unregulated genes, as well as drought responsive genes, were identified (Madritsch et al. 2019). For a set of the unregulated genes, a stable expression over the course of long-term drought periods was evaluated in order to enable an application as reference genes for normalizing qRT-PCR experiments (Kotrade 2019a). The reference genes were used in subsequent experiments to generate gene expression profiles over the course of a two-year drought experiment with consecutive drought periods for a set of twelve drought responsive genes and revealed a highly variable gene regulation under long-term drought stress in the Quercus species (Kotrade et al. 2019b).
In the genus Panicum, the gene expression in response to drought was examined in the two wild crop species, P. laetum and P. turgidum, and in the less drought tolerant species P. bisulcatum via RNA-Seq experiments (Kotrade et al. 2020 (in revision). The transcriptomes of the species were sequenced for the first time, ortholog groups were assigned and the gene regulation was compared across the species. The common grounds of the drought response in Panicum were determined by identifying similarities across the species, while the identification of differences between the species led to genes that might contribute to the higher drought tolerance of P. laetum and P. turgidum
A comparison across the two genera showed large differences in the gene regulation upon drought. This might be largely explained by different experimental setups that resulted in different drought conditions in the genera, such as drought intensity, drought duration and velocity of drought development.
The sequence information and the drought responsive genes identified in the Quercus and Panicum species can be used to develop marker assays for marker-assisted selection. The genes that putatively contribute to the higher drought tolerance of the two wild crop Panicum species should be considered as candidate targets in genetic engineering studies. Marker-assisted selection and genetic engineering can be applied, for example, in assisted migration projects to support natural vegetation in the course of climate change or to breed more drought tolerant crop strains to mitigate crop failure rates caused by droughts
Gisekia(Gisekiaceae):Phylogenetic relationships, biogeography, and ecophysiology of a poorly known C4lineage in the Caryophyllales
• Premise of the study: Gisekiaceae are a monogeneric family of the core Caryophyllales distributed in arid regions of Africa and Asia. The only widespread species of the genus, Gisekia pharnaceoides, performs C4 photosynthesis based on CO2 compensation point measurements. This study investigates the C4 syndrome and its evolution in Gisekia. The infrageneric relationships, distribution and bioclimatic preferences of Gisekia are also investigated. • Methods: Leaf gas exchange characteristics, activity of Rubisco and major C4 cycle enzymes, and ultrastructural characteristics of mesophyll and bundle sheath cells are studied for Gisekia pharnaceoides. δ13C values and leaf anatomy are analyzed for all species. A dated molecular phylogeny of 39 accessions representing all species of Gisekiaceae and 14 representatives of closely related core Caryophyllales families is generated using four cp markers and ITS. The precise current distribution and bioclimatic niche of Gisekia is assessed on the basis of 520 georeferenced specimen localities. • Key results: All traditionally recognized species of Gisekia are C4 plants with atriplicoid Kranz anatomy. Gisekia pharnaceoides uses the NAD-ME biochemical type. The molecular phylogeny demonstrated two East African clades nested within South African clades, demonstrating migration along the arid areas of eastern Africa during the Late Miocene/Pliocene Epochs. Most traditionally defined species are polyphyletic. • Conclusions: Gisekia represents an isolated C4 lineage within core Caryophyllales dating back to the Miocene Epoch and probably spread along the African arid corridor from a South African center of origin. The seven currently recognized species should be treated as one polymorphic species or species complex, Gisekia pharnaceoides agg