4 research outputs found

    Calcium Signaling Initiated by Agonists in Mesenchymal Stromal Cells from the Human Adipose Tissue

    Get PDF
    Mesenchymal stromal cells (MSCs) from different sources represent a heterogeneous population of proliferating non-differentiated cells that contain multipotent stem cells capable of originating a variety of mesenchymal cell lineages. By using Ca2+ imaging and the Ca2+ dye Fluo-4, we studied MSCs from the human adipose tissue and examined Ca2+ signaling initiated by a variety of GPCR ligands, focusing primarily on adrenergic and purinergic agonists. Being characterized by a relative change of Fluo-4 fluorescence, agonist-induced Ca2+ responses were generated in an “all-or-nothing” fashion. Specifically, at relatively low doses, agonists elicited undetectable responses but initiated quite similar Ca2+ transients at all concentrations above the threshold. The inhibitory analysis and Ca2+/IP3 uncaging pointed at the phosphoinositide cascade as a pivotal pathway responsible for agonist transduction and implicated Ca2+-induced Ca2+ release (CICR) in shaping agonists-dependent Ca2+ signals. Altogether, our data suggest that agonist transduction in MSCs includes two fundamentally different stages: an agonist initially triggers a local, gradual, and relatively small Ca2+ signal, which next stimulates CICR to accomplish transduction with a large and global Ca2+ transient. By involving the trigger-like mechanism CICR, a cell is capable of generating Ca2+ responses of virtually universal shape and magnitude at different agonist concentrations above the threshold

    Taste Cells of the Type III Employ CASR to Maintain Steady Serotonin Exocytosis at Variable Ca<sup>2+</sup> in the Extracellular Medium

    No full text
    Type III taste cells are the only taste bud cells which express voltage-gated (VG) Ca2+ channels and employ Ca2+-dependent exocytosis to release neurotransmitters, particularly serotonin. The taste bud is a tightly packed cell population, wherein extracellular Ca2+ is expected to fluctuate markedly due to the electrical activity of taste cells. It is currently unclear whether the Ca2+ entry-driven synapse in type III cells could be reliable enough at unsteady extracellular Ca2. Here we assayed depolarization-induced Ca2+ signals and associated serotonin release in isolated type III cells at varied extracellular Ca2+. It turned out that the same depolarizing stimulus elicited invariant Ca2+ signals in type III cells irrespective of bath Ca2+ varied within 0.5–5 mM. The serotonin release from type III cells was assayed with the biosensor approach by using HEK-293 cells co-expressing the recombinant 5-HT4 receptor and genetically encoded cAMP sensor Pink Flamindo. Consistently with the weak Ca2+ dependence of intracellular Ca2+ transients produced by VG Ca2+ entry, depolarization-triggered serotonin secretion varied negligibly with bath Ca2+. The evidence implicated the extracellular Ca2+-sensing receptor in mediating the negative feedback mechanism that regulates VG Ca2+ entry and levels off serotonin release in type III cells at deviating Ca2+ in the extracellular medium
    corecore