6,211 research outputs found

    Dirac equation for quasi-particles in graphene and quantum field theory of their Coulomb interaction

    Full text link
    There is evidence for existence of massless Dirac quasi-particles in graphene, which satisfy Dirac equation in (1+2) dimensions near the so called Dirac points which lie at the corners at the graphene's brilluoin zone. We revisit the derivation of Dirac equation in (1+2) dimensions obeyed by quasiparticles in graphene near the Dirac points. It is shown that parity operator in (1+2) dimensions play an interesting role and can be used for defining "conserved" currents resulting from the underlying Lagrangian for Dirac quasi-particles in graphene which is shown to have U_{A}(1)*U_{B}(1) symmetry. Further the quantum field theory (QFT) of Coulomb interaction of 2D graphene is developed and applied to vacuum polarization and electron self energy and the renormalization of the effective coupling g of this interaction and Fermi velocity vfv_{f} which has important implications in the renormalization group analysis of g and v_{f}.Comment: 10 pages, some typos have been corrected, some references have been adde

    Lattice field theory simulations of Dirac semimetals

    Get PDF
    In this paper the observed Dirac semimetals Na3_3Bi and Cd3_3As2_2 are studied within lattice simulation. We formulate lattice field theory with rooted staggered fermions on anisotropic lattice. It is shown that in the limit of zero temporal lattice spacing this theory reproduces low energy effective theory of Dirac semimetals. Using this lattice theory we study the phase diagram of Dirac semimetals in the plane effective coupling constant--Fermi velocity anisotropy. Within the formulated theory the results are practically volume independent in contrast with our previous study. Our results confirm our previous finding that within the Dirac model with bare Coulomb interaction both Na3_3Bi and Cd3_3As2_2 lie deep in the insulator phase.Comment: 11 pages, 5 figures, 2 tables, typo in Eq. (20) corrected, Appendix adde

    Study of shear viscosity of SU (2)-gluodynamics within lattice simulation

    Full text link
    This paper is devoted to the study of two-point correlation function of the energy-momentum tensor T_{12}T_{12} for SU(2)-gluodynamics within lattice simulation of QCD. Using multilevel algorithm we carried out the measurement of the correlation function at the temperature T/T_c = 1.2. It is shown that lattice data can be described by spectral functions which interpolate between hydrodynamics at low frequencies and asymptotic freedom at high frequencies. The results of the study of spectral functions allowed us to estimate the ratio of shear viscosity to the entropy density {\eta}/s = 0.134 +- 0.057.Comment: 7 pages, 3 figure
    corecore