55 research outputs found

    GliomaPredict: A Clinically Useful Tool for Assigning Glioma Patients to Specific Molecular Subtypes

    Get PDF
    Background: Advances in generating genome-wide gene expression data have accelerated the development of molecular-based tumor classification systems. Tools that allow the translation of such molecular classification schemas from research into clinical applications are still missing in the emerging era of personalized medicine. Results: We developed GliomaPredict as a computational tool that allows the fast and reliable classification of glioma patients into one of six previously published stratified subtypes based on sets of extensively validated classifiers derived from hundreds of glioma transcriptomic profiles. Our tool utilizes a principle component analysis (PCA)-based approach to generate a visual representation of the analyses, quantifies the confidence of the underlying subtype assessment and presents results as a printable PDF file. GliomaPredict tool is implemented as a plugin application for the widely-used GenePattern framework. Conclusions: GliomaPredict provides a user-friendly, clinically applicable novel platform for instantly assigning gene expression-based subtype in patients with gliomas thereby aiding in clinical trial design and therapeutic decisionmaking. Implemented as a user-friendly diagnostic tool, we expect that in time GliomaPredict, and tools like it, will become routinely used in translational/clinical research and in the clinical care of patients with gliomas

    Age-Specific Signatures of Glioblastoma at the Genomic, Genetic, and Epigenetic Levels

    Get PDF
    Age is a powerful predictor of survival in glioblastoma multiforme (GBM) yet the biological basis for the difference in clinical outcome is mostly unknown. Discovering genes and pathways that would explain age-specific survival difference could generate opportunities for novel therapeutics for GBM. Here we have integrated gene expression, exon expression, microRNA expression, copy number alteration, SNP, whole exome sequence, and DNA methylation data sets of a cohort of GBM patients in The Cancer Genome Atlas (TCGA) project to discover age-specific signatures at the transcriptional, genetic, and epigenetic levels and validated our findings on the REMBRANDT data set. We found major age-specific signatures at all levels including age-specific hypermethylation in polycomb group protein target genes and the upregulation of angiogenesis-related genes in older GBMs. These age-specific differences in GBM, which are independent of molecular subtypes, may in part explain the preferential effects of anti-angiogenic agents in older GBM and pave the way to a better understanding of the unique biology and clinical behavior of older versus younger GBMs

    Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain

    Get PDF
    SummaryStem cell factor (SCF) is overexpressed by neurons following brain injury as well as by glioma cells; however, its role in gliomagenesis remains unclear. Here, we demonstrate that SCF directly activates brain microvascular endothelial cells (ECs) in vitro and induces a potent angiogenic response in vivo. Primary human gliomas express SCF in a grade-dependent manner and induce normal neurons to express SCF in brain regions infiltrated by glioma cells, areas that colocalize with prominent angiogenesis. Downregulation of SCF inhibits tumor-mediated angiogenesis and glioma growth in vivo, whereas overexpression of SCF is associated with shorter survival in patients with malignant gliomas. Thus, the SCF/c-Kit pathway plays an important role in tumor- and normal host cell-induced angiogenesis within the brain

    Global analyses of human immune variation reveal baseline predictors of postvaccination responses.

    Get PDF
    A major goal of systems biology is the development of models that accurately predict responses to perturbation. Constructing such models requires the collection of dense measurements of system states, yet transformation of data into predictive constructs remains a challenge. To begin to model human immunity, we analyzed immune parameters in depth both at baseline and in response to influenza vaccination. Peripheral blood mononuclear cell transcriptomes, serum titers, cell subpopulation frequencies, and B cell responses were assessed in 63 individuals before and after vaccination and were used to develop a systematic framework to dissect inter- and intra-individual variation and build predictive models of postvaccination antibody responses. Strikingly, independent of age and pre-existing antibody titers, accurate models could be constructed using pre-perturbation cell populations alone, which were validated using independent baseline time points. Most of the parameters contributing to prediction delineated temporally stable baseline differences across individuals, raising the prospect of immune monitoring before intervention

    GliomaPredict: a clinically useful tool for assigning glioma patients to specific molecular subtypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in generating genome-wide gene expression data have accelerated the development of molecular-based tumor classification systems. Tools that allow the translation of such molecular classification schemas from research into clinical applications are still missing in the emerging era of personalized medicine.</p> <p>Results</p> <p>We developed GliomaPredict as a computational tool that allows the fast and reliable classification of glioma patients into one of six previously published stratified subtypes based on sets of extensively validated classifiers derived from hundreds of glioma transcriptomic profiles. Our tool utilizes a principle component analysis (PCA)-based approach to generate a visual representation of the analyses, quantifies the confidence of the underlying subtype assessment and presents results as a printable PDF file. GliomaPredict tool is implemented as a plugin application for the widely-used GenePattern framework.</p> <p>Conclusions</p> <p>GliomaPredict provides a user-friendly, clinically applicable novel platform for instantly assigning gene expression-based subtype in patients with gliomas thereby aiding in clinical trial design and therapeutic decision-making. Implemented as a user-friendly diagnostic tool, we expect that in time GliomaPredict, and tools like it, will become routinely used in translational/clinical research and in the clinical care of patients with gliomas.</p

    Prediction of Associations between microRNAs and Gene Expression in Glioma Biology

    Get PDF
    Despite progress in the determination of miR interactions, their regulatory role in cancer is only beginning to be unraveled. Utilizing gene expression data from 27 glioblastoma samples we found that the mere knowledge of physical interactions between specific mRNAs and miRs can be used to determine associated regulatory interactions, allowing us to identify 626 associated interactions, involving 128 miRs that putatively modulate the expression of 246 mRNAs. Experimentally determining the expression of miRs, we found an over-representation of over(under)-expressed miRs with various predicted mRNA target sequences. Such significantly associated miRs that putatively bind over-expressed genes strongly tend to have binding sites nearby the 3โ€ฒUTR of the corresponding mRNAs, suggesting that the presence of the miRs near the translation stop site may be a factor in their regulatory ability. Our analysis predicted a significant association between miR-128 and the protein kinase WEE1, which we subsequently validated experimentally by showing that the over-expression of the naturally under-expressed miR-128 in glioma cells resulted in the inhibition of WEE1 in glioblastoma cells

    CNAReporter: A Computational Tool for the Generation of Clinical Reports of Genomic Alterations

    Get PDF
    Background: Genomic copy number alterations are widely associated with a broad range of human tumors and offer the potential to be used as a diagnostic tool. Especially in the emerging era of personalized medicine medical informatics tools that allow the fast visualization and analysis of genomic alterations of a patient\u27s genomic profile for diagnostic and potential treatment purposes increasingly gain importance. Results: We developed CNAReporter, a software tool that allows users to visualize SNP-specific data obtained from Affymetrix arrays and generate PDF-reports as output. We combined standard algorithms for the analysis of chromosomal alterations, utilizing the widely applied GenePattern framework. As an example, we show genome analyses of two patients with distinctly different CNA profiles using the tool. Conclusions: Glioma subtypes, characterized by different genomic alterations, are often treated differently but can be difficult to differentiate pathologically. CNAReporter offers a user-friendly way to visualize and analyse genomic changes of any given tumor genomic profile, thereby leading to an accurate diagnosis and patient-specific treatment

    Open Access SOFTWARE

    No full text
    Abstract Background: Genomic copy number alterations are widely associated with a broad range of human tumors and offer the potential to be used as a diagnostic tool. Especially in the emerging era of personalized medicine medical informatics tools that allow the fast visualization and analysis of genomic alterations of a patient&apos;s genomic profile for diagnostic and potential treatment purposes increasingly gain importance. Results: We developed CNAReporter, a software tool that allows users to visualize SNP-specific data obtained from Affymetrix arrays and generate PDF-reports as output. We combined standard algorithms for the analysis of chromosomal alterations, utilizing the widely applied GenePattern framework. As an example, we show genome analyses of two patients with distinctly different CNA profiles using the tool. Conclusions: Glioma subtypes, characterized by different genomic alterations, are often treated differently but can be difficult to differentiate pathologically. CNAReporter offers a user-friendly way to visualize and analyse genomic changes of any given tumor genomic profile, thereby leading to an accurate diagnosis and patient-specific treatment
    • โ€ฆ
    corecore