681 research outputs found

    Orbital selective and tunable Kondo effect of magnetic adatoms on graphene: Correlated electronic structure calculations

    Full text link
    We have studied the effect of dynamical correlations on the electronic structure of single Co adatoms on graphene monolayers with a recently developed novel method for nanoscopic materials that combines density functional calculations with a fully dynamical treatment of the strongly interacting 3d-electrons. The coupling of the Co 3d-shell to the graphene substrate and hence the dynamic correlations are strongly dependent on the orbital symmetry and the system parameters (temperature, distance of the adatom from the graphene sheet, gate voltage). When the Kondo effect takes place, we find that the dynamical correlations give rise to strongly temperature-dependent peaks in the Co 3d-spectra near the Fermi level. Moreover, we find that the Kondo effect can be tuned by the application of a gate voltage. It turns out that the position of the Kondo peaks is pinned to the Dirac points of graphene rather than to the chemical potential.Comment: 12 pages, 7 figure

    Evolution of photoemission spectral functions in doped transition metal oxides

    Full text link
    We discuss the experimental photoemission and inverse photoemission of early transition metal oxides, in the light of the dynamical mean field theory of correlated electrons which becomes exact in the limit of infinite dimensions. We argue that a comprehensive description of the experimental data requires spatial inhomogeneities and present a calculation of the evolution of the spectral function in an inhomogenous system with various degrees of inhomogeneity. We also point out that comparaison of experimental results and large d calculations require that the degree of correlation and disorder is larger in the surface than in the bulk

    Many-Body Approximation Scheme Beyond GW

    Full text link
    We explore the combination of the extended dynamical mean field theory (EDMFT) with the GW approximation (GWA); the former sums the local contributions to the self-energies to infinite order in closed form and the latter handles the non-local ones to lowest order. We investigate the different levels of self-consistency that can be implemented within this method by comparing to the exact QMC solution of a finite-size model Hamiltonian. We find that using the EDMFT solution for the local self-energies as input to the GWA for the non-local self-energies gives the best result.Comment: 4 pages, 8 figure

    Spectral functions in doped transition metal oxides

    Full text link
    We present experimental photoemission and inverse photoemission spectra of SrTiO3δ_{3- \delta} representing electron doped d0d^0 systems. Photoemission spectra in presence of electron doping exhibit prominent features arising from electron correlation effects, while the inverse photoemssion spectra are dominated by spectral features explainable within single-particle approaches. We show that such a spectral evolution in chemically doped correlated systems is not compatible with expectations based on Hubbard or any other similar model. We present a new theoretical approach taking into account the inhomogeneity of the `real' system which gives qualitatively different results compared to standard `homogeneous' models and is in quantitative agreement with experiments.Comment: 10 pages; 1 tex file+4 postscript files (to appear in Europhysics Letters

    Fermi arcs and the hidden zeros of the Green's function in the pseudogap state

    Full text link
    We investigate the low energy properties of a correlated metal in the proximity of a Mott insulator within the Hubbard model in two dimensions. We introduce a new version of the Cellular Dynamical Mean Field Theory using cumulants as the basic irreducible objects. These are used for re-constructing the lattice quantities from their cluster counterparts. The zero temperature one particle Green's function is characterized by the appearance of lines of zeros, in addition to a Fermi surface which changes topology as a function of doping. We show that these features are intimately connected to the opening of a pseudogap in the one particle spectrum and provide a simple picture for the appearance of Fermi arcs.Comment: revised version; 5 pages, 3 figure

    Disorder Screening in Strongly Correlated Systems

    Full text link
    Electron-electron interactions generally reduce the low temperature resistivity due to the screening of the impurity potential by the electron gas. In the weak-coupling limit, the magnitude of this screening effect is determined by the thermodynamic compressibility which is proportional to the inverse screening length. We show that when strong correlations are present, although the compressibility is reduced, the screening effect is nevertheless strongly enhanced. This phenomenon is traced to the same non-perturbative Kondo-like processes that lead to strong mass enhancements, but which are absent in weak coupling approaches. We predict metallicity to be strongly stabilized in an intermediate regime where the interactions and the disorder are of comparable magnitude.Comment: 4+epsilon pages, 3 figure

    Phase diagram, energy scales and nonlocal correlations in the Anderson lattice model

    Get PDF
    We study the Anderson lattice model with one f-orbital per lattice site as the simplest model which describes generic features of heavy fermion materials. The resistivity and magnetic susceptibility results obtained within dynamical mean field theory (DMFT) for a nearly half-filled conduction band show the existence of a single energy scale TT^* which is similar to the single ion Kondo temperature TKoT_K^o. To determine the importance of inter-site correlations, we have also solved the model within cellular DMFT (CDMFT) with two sites in a unit cell. The antiferromagnetic region on the phase diagram is much narrower than in the single-site solution, having a smaller critical hybridization VcV_c and N\'eel temperature TNT_N. At temperatures above TNT_N the nonlocal correlations are small, and the DMFT paramagnetic solution is in this case practically exact, which justifies the ab initio LDA+DMFT approach in theoretical studies of heavy fermions. Strong inter-site correlations in the CDMFT solution for T<TNT<T_N, however, indicate that they have to be properly treated in order to unravel the physical properties near the quantum critical point.Comment: 10 page

    Interplane charge dynamics in a valence-bond dynamical mean-field theory of cuprate superconductors

    Full text link
    We present calculations of the interplane charge dynamics in the normal state of cuprate superconductors within the valence-bond dynamical mean-field theory. We show that by varying the hole doping, the c-axis optical conductivity and resistivity dramatically change character, going from metallic-like at large doping to insulating-like at low-doping. We establish a clear connection between the behavior of the c-axis optical and transport properties and the destruction of coherent quasiparticles as the pseudogap opens in the antinodal region of the Brillouin zone at low doping. We show that our results are in good agreement with spectroscopic and optical experiments.Comment: 5 pages, 3 figure
    corecore