
ar
X

iv
:1

10
6.

47
08

v2
  [

co
nd

-m
at

.s
tr

-e
l]

  9
 S

ep
 2

01
1
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We study the Anderson lattice model with one f-orbital per lattice site as the simplest model which
describes generic features of heavy fermion materials. The resistivity and magnetic susceptibility
results obtained within dynamical mean field theory (DMFT) for a nearly half-filled conduction band
show the existence of a single energy scale T ∗ which is similar to the single ion Kondo temperature
T o

K . To determine the importance of inter-site correlations, we have also solved the model within
cellular DMFT (CDMFT) with two sites in a unit cell. The antiferromagnetic region on the phase
diagram is much narrower than in the single-site solution, having a smaller critical hybridization
Vc and Néel temperature TN . At temperatures above TN the nonlocal correlations are small, and
the DMFT paramagnetic solution is in this case practically exact, which justifies the ab initio
LDA+DMFT approach in theoretical studies of heavy fermions. Strong inter-site correlations in the
CDMFT solution for T < TN , however, indicate that they have to be properly treated in order to
unravel the physical properties near the quantum critical point.

PACS numbers: 71.27.+a,71.30.+h

I. INTRODUCTION

Heavy fermions have been intensively studied in the
past thirty years and a large amount of experimental data
has been gathered,1,2 but a complete microscopic the-
ory of these materials is still not available.3 The unusual
low temperature properties originate from the electrons
from partially filled f-shells which hybridize with a broad
band of weakly interacting conduction electrons. At high
temperatures, the f-electrons are weakly coupled to the
conduction electron band and act as local magnetic mo-
ments on which the conduction electrons are scattered.
Below the characteristic temperature (the lattice coher-
ence temperature) T ∗, the coherent quasiparticles start
to develop and the resistivity suddenly decreases. The
dependence of T ∗ on microscopic parameters and the na-
ture of the coherent heavy electron (Kondo) liquid is still
a subject of active debate.4–6

Many experiments clearly show the existence of a
unique energy scale that characterizes all transport and
thermodynamic properties7,8 and several attempts were
made to explain universal features of heavy fermions,
both within the phenomenological theory4,5 and from the
solution of the microscopical model.9 There is, however,
a growing evidence6 that the energy scales which dom-
inate the low temperature properties of heavy fermions
depend on details of the density of states near the Fermi
level and the degeneracy and crystal fields splitting of the
f states - the system dependent properties which cannot
be captured by the simple theoretical model with just
one f-spin dublet or a featureless conduction band den-
sity of states. The physics is even richer at temperatures
T ≪ T ∗, where the system typically orders magnetically
and even exhibits superconductivity.10–12

In this work we solve the Anderson lattice model

(ALM) with one f-electron orbital per lattice site, in or-
der to precisely determine the lattice coherence temper-
ature T ∗ and the importance of nonlocal correlations in
different regions of the phase diagram. We concentrate
on the most interesting regime of parameters near the
antiferromagnetic phase driven by the conduction elec-
tron mediated Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction.13 The model is first solved within the DMFT
approximation14 which is exact in the case of purely local
correlations, i.e. in the case where the self-energy depends
only on frequency and not on the momentum. The rele-
vance of the local approximation is tested by a compari-
son with the CDMFT solution.15,16 We consider a cluster
of two sites in a self-consistently determined medium as
a minimal model which treats the inter-site correlations
beyond the mean field level. For temperatures larger
than the Néel temperature, we find that the nonlocal
correlations are very small and the local DMFT solu-
tions becomes practically exact. Therefore, for stronger
hybridization the lattice coherence temperature is deter-
mined by the local DMFT solution and in this case, in the
ALM close to half-filling, we find that it is proportional to
the single ion Kondo temperature for the same set of pa-
rameters, T ∗ ≈ T ∗

DMFT ∼ T o
K . For weaker hybridization,

near the antiferromagnetic critical point, T ∗
DMFT . TN

and the coherence temperature is likely to be dominated
by the inter-site correlations driven by the RKKY inter-
action. To determine the precise form of T ∗ in this regime
and to unravel the physical properties near the quan-
tum critical point, we need to consider larger clusters
and different clustering schemes. The important conclu-
sion can, however, be drawn already from the present re-
sults: for temperatures T > TN the correlations are local,
which means that LDA+DMFT theory gives an excellent
framework for a quantitative study of heavy fermion ma-
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terials in this temperature range.17–19 The LDA+DMFT
method,20 obtained by combining DMFT with the local
density approximation (LDA) treats on equal footing the
band structure, the atomic multiplet splitting and the
Kondo physics, but assumes that the correlations are lo-
cal in space. This method has led to a significant progress
in the study of strongly correlated materials, and may
also prove crucial in order to determine the importance
of the crystal field effects and atomic multiplets for low
temperature properties of various heavy fermions.
The remaining part of the paper is organized as follows.

In Section II we define the Hamiltonian and describe the
CDMFT method of its solution. Section III contains the
phase diagram and a comparison of the results with a
single-site DMFT. The coherence temperature T ∗

DMFT is
determined from the magnetic susceptibility and resistiv-
ity results in Section IV, and in Section V the strength
of nonlocal correlations is examined. Conclusions and
discussion are presented in Section VI.

II. METHODS

We consider the periodic Anderson model of three-
dimensional cubic lattice given by the Hamiltonian

H = −t
∑

〈ij〉,σ

c†iσcjσ − µ
∑

iσ

c†iσciσ + V
∑

iσ

(f †
iσciσ + h.c.)

+ (Ef − µ)
∑

iσ

f †
iσfiσ + U

∑

i

nf
i↑n

f
i↓. (2.1)

c†iσ and f †
iσ create a conduction band electron (c-electron)

and f-electron at site i for spin σ. nf
iσ = f †

iσfiσ is
the occupation number operator of f-electrons, t nearest
neighbor hopping amplitude, µ chemical potential, V hy-
bridization strength, U interaction, and Ef is f-electron
energy level. In DMFT, the solution of the ALM reduces
to solving a single impurity problem supplemented by
a self-consistency condition.14 In CDMFT, in contrast,
the original lattice is tiled with a superlattice of clusters.
An effective Anderson impurity action is derived for a
single cluster and supplemented by the self-consistency
condition which relates the cluster Green’s function to
the local Green’s function of the superlattice.15,16 For
the cluster of two impurities, allowing for the antiferro-
magnetic order, there are three independent components
of the cluster Green function, e.g. G11↑, G22↑, and G12↑.
Details of the self-consistent procedure for calculation of
Green’s function are presented in Appendix A.
Technically the most difficult step in the DMFT

(CDMFT) procedure is a solution of the model of an
impurity (cluster of impurities) immersed into the given
conduction bath. For this step we use the Continu-
ous Time Quantum Monte Carlo (CTQMC) impurity
solver21 in the implementation from Ref. 22. This al-
lows us to obtain numerically exact solution even at very

low temperatures which are well below the Néel temper-
ature of the model. We note that the same model in
the CDMFT framework was studied previously, but this
work used numerical methods which are inferior as com-
pared to the CTQMC. The CTQMC allows us to reach
temperatures order of magnitude lower than the Hirsh-
Fye impurity solver used in Ref. 23. The exact diago-
nalization method,24 on the other hand, is restricted to
zero temperature, it discretizes the degrees of freedom
of the conduction bath and uses a discrete mesh of fre-
quency points much larger than the temperature in our
work. Since the energy scales for the range of parame-
ters where the Kondo temperature and RKKY interac-
tion energy are comparable in magnitude are very small,
the numerical method that we use in this paper is crucial
in order to precisely determine the phase diagram and to
examine the importance of nonlocal correlations.

III. PHASE DIAGRAM

We present the solution of DMFT (CDMFT) equations
for the Anderson lattice model for U = 1.2, Ef = −0.4,
µ = −0.03 and various hybridization V . These pa-
rameters correspond to metallic nearly half-filled system,
where stable magnetic phase and strong nonlocal effects
are expected. The occupation of f-electrons is close to
1 (Kondo limit) and the total occupation close to 2.
Nearly half-filled conduction band leads to antiferromag-
netic correlations in the spin density. We will concentrate
on the most interesting regime of hybridization where the
Kondo temperature and RKKY interaction energy are of
the same order of magnitude. The energy will be mea-
sured in units of the conduction electron half-bandwidth
D = 6t = 1. The lowest temperature in numerical results
is T = 1/1200 which is crucial in order to stabilize the
antiferromagnetic solution within CDMFT.
The phase diagram of the model is shown in Fig. 1.

The phase boundary between the antiferromagnetic
(AFM) and paramagnetic solution is determined by the
relative strength of the Kondo screening and RKKY in-
teraction. The result is in a qualitative agreement with
Doniach’s phase diagram: the AFM solution is stabilized
for small hybridization V when JRKKY ∼ ρoJ

o
K

2 domi-
nates over the Kondo scale T o

K ∼ exp(−1/2ρoJ
o
K). Here

Jo
K = ( 1

|Ef−µ| +
1

|U+Ef−µ| )V
2 is the bare Kondo cou-

pling and ρo is the density of states of the conduction
electrons at the Fermi level. The numerical solution of
ALM model, however, gives us a possibility to quanti-

tatively determine the relevant energy scales. Red dot-
ted line in Fig. 1 is the lattice coherence temperature
T ∗
DMFT obtained, in DMFT solution, as the tempera-

ture corresponding to the maximum resistivity for a given
value of V (see Section IV). In DMFT, which neglects
nonlocal correlations, the Néel temperature TDMFT

N can
be taken as the measure of JRKKY . In AFM phase
T ∗
DMFT < TDMFT

N in almost entire phase diagram (ex-
cept very close to the critical V DMFT

c ), in agreement
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FIG. 1: (Color online) Temperature vs. hybridization phase
diagram in DMFT (solid red line) and CDMFT (solid blue
line). The red dotted line is the coherence temperature in
the DMFT solution. Nonlocal correlations are very weak for
temperatures above Tnl (blue dotted line) and in this region
the paramagnetic DMFT solution is practically exact.

with recent DMFT phase diagram for the Kondo lattice
model.25

The AFM region in the CDMFT solution is signifi-
cantly narrower than in the single site DMFT solution
due to the inter-site correlations which are treated be-
yond the mean-filed level in CDMFT. The highest Néel
temperature in CDMFT is approximately four times
lower than in DMFT. The critical hybridization Vc for the
quantum phase transition reduces from V DMFT

c ≈ 0.23
in DMFT to Vc ≈ 0.18 in CDMFT solution. As examined
in detail in Section V, above the temperature Tnl ∼ 0.004
the nonlocal correlations are very small and the param-
agnetic solution in single-site DMFT becomes practically
exact for T & Tnl. For T < Tnl, however, inter-site cor-
relations found in two-site CDMFT are strong and domi-
nate the low temperature physics of the ALM for V . Vc.
The CTQMC impurity solver22 enables us to stabi-

lize the AFM solution in CDMFT at very low tempera-
tures with a small minus sign problem. The numerical
quality of the data can be verified from the magnetiza-
tion results shown on Fig. 2. In the DMFT solution,
the mean-field behavior of the staggered magnetization,
nf↑−nf↓ ∝ −(nc↑−nc↓) ∝ (1−T/Tc)

1/2, is observed in
a wide temperature range. In the CDMFT solution, the
short range correlations are better taken into account and
the mean-field behavior is restricted to narrower temper-
ature region near Tc. The error bars are the statistical
errors estimated from several CTQMC runs. They are
much larger in the CDMFT solution due to the appear-
ance of a minus sign problem in the AFM phase. The
staggered magnetization mf = nf↑ − nf↓ is less than 1
even as T → 0 due to the hybridization with the con-
duction electrons. mf in CDMFT solution is almost two
times smaller than in DMFT. Typical results for the self-
energy and Green’s functions on the Matsubara axis are
shown in Appendix B.
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FIG. 2: (Color online) Staggered magnetization of f- and
c-electrons in DMFT (a) and CDMFT solution (b). Dotted
lines are fit to the square root mean-field curve.

IV. COHERENCE TEMPERATURE IN DMFT

SOLUTION

At high temperatures f-electrons are weakly coupled to
the conduction band electrons and behave as local mo-
ments. The scattering of c-electrons initially increases
with decreasing temperature similarly as in the limit of
diluted magnetic moments. The resistivity reaches a
maximum at a characteristic temperature Tmax that can
be taken for a definition of the lattice coherence temper-
ature. Below Tmax f- and c-electrons strongly hybridize
and eventually form long-lived heavy quasiparticles.
In the single-site DMFT it is easy to calculate the scat-

tering rate and the resistivity. They are obtained from
the self-energy Σc which corresponds to the conduction
electrons. The conduction electrons Green function is
given by Gc(ω) = 1

N

∑

~k[ω + µ − ε~k − Σc(ω)]
−1, where

Σc(ω) = V 2/(ω − Ef + µ − Σf (ω)), and Σf is the self-
energy of the impurity (i.e. f-electron). The scattering
rate is given by τ−1 = −2ImΣc(ω = 0), and the resistiv-
ity ρ is obtained from the zero frequency limit of the real
part of the optical conductivity,26,27 ρ = 1/Reσ(ω → 0),

ρ−1 = πe2
1

N

∑

~k

∫

dω

(

− df

dω

)

v2xA
2(~k, ω). (4.1)

Here A(~k, ω) = Im(ω+µ− ε~k−Σc(ω)) is the conduction
electron spectral function, vx = ∂ε~k/∂kx, N is the num-
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FIG. 3: (Color online) (a) Scattering rate and (b) resis-
tivity as a function of temperature for several hybridization
strengths. (c) The resistivity curves approximately collapse
to a single one after scaling the temperature.

ber of ~k states in the Brillouin zone, and f is the Fermi-
Dirac distribution. In the CTQMC impurity solver the
self-energy is obtained at Matsubara frequencies and to
obtain the real frequency data we assume the polynomial
form for Σc at low frequencies, Σc = az2+bz+c, and de-
termine the complex parameters a, b, and c from the real
and imaginary parts of Σc(iωn) for first three Matsubara
frequencies, for each T and V . This simple analytical
continuation is not restricted to the Fermi liquid region
and it turned out to be remarkably accurate as we will
see from the analysis of the resistivity curves.

The scattering rate is shown on Fig. 3(a) as a function
of temperature and for several values of hybridization
parameter. The scattering rate curves have a prominent
maxima at values which are of the order of the Mott-Ioffe-
Regel limit for maximal metallic resistivity, τ−1

max ∼ 1.
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slope A is a linear function of 1/T 2

max. (c) The temperature
Tmax of the resistivity maximum depends exponentially on
the hybridization.

The resistivity saturation at this value, which corre-
sponds to the mean free path of one lattice spacing, is
indeed the property of heavy fermions.28,29 It can be sim-
ply explained from the sum rule, and the resistivity sat-
urates when the Drude peak in the optical conductivity
gets completely smeared with increasing temperature.30

The resistivity curves, Fig. 3(b), have the same form as
the scattering rate curves, with only slightly shifted max-
ima due to the temperature dependence of the real part
of Σc. The resistivity is given in units of ρ

Mott
defined

as the resistivity for τ−1 = 1. When the temperature is
scaled with Tmax, the shape of the resistivity curves is al-
most the same for all values of the hybridization strength,
Fig. 3(c).
The resistivity, Fig. 4(a), follows the Fermi liquid form,

ρ = AT 2, up to the temperature ∼ Tmax/2 which can be
taken as the boundary of the Fermi liquid region. We
use the data for T < Tmax/2 to determine the slope
A, which depends linearly on 1/T 2

max, Fig. 4(b). This
is a manifestation of the Kadowaki-Woods relation7,31,32

which establishes a universal ratio between the resistivity
and thermodynamic quantities, such as the specific heat.
In our case A ∼ 1/T 2

max ∼ m∗2 ∼ γ2, where m∗ is the
effective mass and γ is the specific heat coefficient. The
Kadowaki-Woods ratio explains excellent scaling of the
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resistivity curves at low temperatures. By scaling only
the temperature, we find that the curves approximately
collapse to a single curve in the whole temperature range
since the maximum resistivity is approximately the same
for all values of hybridization. The resistivity scaling
was successfully applied in an early experimental paper
on CeCu6.

8

The resistivity scaling clearly shows the existence of
just one energy scale - lattice coherence temperature
T ∗ ≡ Tmax. Therefore, it is very important to determine
its dependence on microscopic parameters and make a
comparison with the single ion Kondo temperature. As
we show on Fig. 4(c), the resistivity maximum depends
exponentially on the hybridization parameter. We can
use a relation T ∗ = C exp(−1/2ρoJ

latt
K ) as a definition

for the lattice Kondo coupling. Taking ρo = 0.855 for
the conduction band density of states, we obtain J latt

K =
3.7V 2 ≈ Jo

K , where Jo
K = ( 1

|Ef−µ| +
1

|U+Ef−µ| )V
2 =

3.9V 2. Therefore, in the theory with only local correla-
tions, the coherence temperature has the same functional
form as the single ion Kondo temperature T o

K and the ef-
fective Kondo coupling J latt

K is approximately the same
as Jo

K . We note that the functional form of Tmax(V ) is
the same if Tmax is taken from the scattering rate curves,
with the same value for J latt

K and with the prefactor C
only slightly smaller than the one obtained from the re-
sistivity curves.
We further compare the lattice and single ion energy

scale using the magnetic susceptibility data. Static local
magnetic susceptibility, χloc(ω = 0) ≡ χ, can be de-
termined very accurately using CTQMC as the impurity
solver and does not require analytical continuation of the
data. The plots on Fig. 5 are obtained by scaling with
a single parameter To - which we call the lattice Kondo

temperature. As in the single ion case, the temperature
is scaled by To and the susceptibility is multiplied by To
in order to collapse the data on a single curve. To has
exponential dependence on V 2 as we analyze in detail in
the rest of this Section. The scaling of the susceptibil-
ity, Fig. 5(a), is very good except for the temperatures
T < Tmax. The reason is that the hybridization bath as-
sumes strong temperature dependence for temperatures
lower than the lattice coherence temperature. If we omit
the data in the scaling analysis for T < Tmax for each
value of V , we find that all the data collapse to a single
universal curve, inset in Fig. 5(a). The same scaling anal-
ysis for the inverse susceptibility is shown in Fig. 5(b).
We now carefully analyze the local susceptibility and

make a comparison with the single ion case. Fig. 6(a)
and Fig. 6(b) show the inverse susceptibility as a func-
tion of temperature for the ALM and the single impurity
Anderson model (SIAM). We start from the Curie-Weiss
form

χ−1 = aT + bTo. (4.2)

Here a and b are constants. In the single ion case To cor-
responds to the Kondo temperature T o

K . In the lattice
model χ(T ) also follows the Curie-Weiss form except at
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FIG. 5: (Color online) Scaled susceptibility (a) (inverse sus-
ceptibility (b)) as a function of scaled temperature. If we omit
the data for T < Tmax (the insets), the scaling is excellent.

the lowest temperatures, T . Tmax, where it significantly
deviates from linear dependence. The inverse susceptibil-
ity at T = T ∗ = Tmax is shown by the solid red dots in
Fig. 6(a). As expected, the value of χ−1 at T = T ∗ is
proportional T ∗. To obtain the lattice Kondo temper-
ature T latt

K , we omit the data for T < T ∗ and make a
fit to Eq. (4.2). For the case of a single impurity we
can keep all data to obtain To ≡ T o

K . The ALM and
SIAM values for To differ by a factor two, Fig. 6(c), but
have the same exponential dependence on V 2, Fig. 6(d):
To ∝ exp(−1/2ρoJK), where the lattice Kondo coupling
J latt
K ≈ Jo

K ∝ V 2. Some deviation from linear behavior
for SIAM is due to the small change of the occupation
number (0.9 < nf < 0.96) since we keep the chemical
potential fixed while changing T and V .

We can conclude that both the resistivity and magnetic
susceptibility data give the same value for the effective
lattice Kondo coupling whose value is very similar to the
bare Kondo coupling in the the case of diluted impuri-
ties. The Curie-Weiss form, Eq. (4.2), gives the value of
To up to the prefactor. In order to compare the absolute
values of T ∗ ≡ Tmax and T latt

K ≡ To for the ALM, we can
use the value b from the single impurity theory. From the
Wilson formula1 χ(T = 0) = 0.4128/(4T o

K), which gives
b = 9.7. (We used b = 9.7, a = 4, and gµB = 1 on the
scaling plot, Fig. 5.) Then T ∗/T latt

K = 0.6 and their ratio
does not depend on V . The conclusion that T ∗ and T o

K



6

 0

 0.05

 0.1

 0.15

 0.2

 0  0.004  0.008  0.012  0.016

χ-1

T

(a)

V=0.16
V=0.17
V=0.18
V=0.19
V=0.21
V=0.23
V=0.25

4T

 0

 0.05

 0.1

 0.15

 0.2

 0  0.004  0.008  0.012  0.016

χ-1

T

(b)

V=0.16
V=0.17
V=0.18
V=0.19
V=0.21
V=0.23
V=0.25

4T

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16  0.18  0.2  0.22  0.24

bT
o

V

(c)

ALM
SIAM

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

 15  20  25  30  35  40

Ln
 (

bT
o)

1/V2

(d)

ALM
-0.156 x+0.534

SIAM
-0.147 x-0.418

FIG. 6: (Color online) Inverse magnetic susceptibility as a
function of temperature for ALM (a), and SIAM (b). For the
ALM the susceptibility follows the Curie-Weiss form above
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have the same exponential dependence on the hybridiza-
tion parameter, i.e. on the coupling constant, agrees with
the previous results using the numerical renormalization
group as the impurity solver9,33, and slave boson mean
field theory,6 and this is valid even far away from half-
filling. The prefactor is, however, of the order of 1 only in
the case of nearly half-filled featureless conduction band.
Only in this case there is a single energy scale in the ALM
and all additional low-energy scales assigned to different
physical properties are proportional to this single low-
temperature scale. For small occupation of c-electrons
there are two energy scales: T 0

K where the screening be-
gins, and T ∗ ≪ T o

K where coherence sets in.9,33 T ∗ ≪ T o
K

also if there is a peak in the noninteracting conduction
band density of states, while T ∗ ≫ T o

K if there is a dip at
the Fermi level.6 Before we concentrate on the strength
of inter-site correlations, which has not been previously
explored, we will make few additional remarks about the
analytical continuation performed in our work.
The only assumption that we use is that the self-energy

is an analytical function, and we approximate the low-
frequency part by a second order polynomial obtained
from the self-energy at first three Matsubara frequencies.
High frequency part of the self-energy is not important
at all when calculating the resistivity, since the deriva-
tive of the Fermi-Dirac function in Eq. (4.1) is negligible
away from the Fermi level. It is enough to keep the fre-
quencies |ω| . 3T in the integral, and in this case a
second order polynomial is a reasonable approximation
for the self-energy. The approximation by a polynomial
would be problematic if the self-energy is non-analytic
near the quantum critical point. However, in our case we
do not have such an irregular self-energy to worry about.
Finally, our results include two stringent tests of the ana-
lytical continuation: the Fermi liquid behavior at low T is
reproduced remarkably well, and the susceptibility data,
which does not require the analytical continuation, give
the same energy scales as obtained from the resistivity
calculations. We emphasize, however, that our method
for analytical continuation is not restricted to the Fermi
liquid region, and we believe that it is the best possible
option if we are interested only in the low frequency part
of the spectrum. The maximum entropy method gives
roughly correct spectra at intermediate frequencies, but
from our experience, it never gives better results than the
polynomial fit at low frequencies. The small noise from
QMC data can also lead to fairly bad results in the Padé
method for the analytical continuation.

V. STRENGTH OF NONLOCAL

CORRELATIONS

The results obtained in the previous section are exact
if the correlations are local, i.e. if the self-energy depends
only on the frequency and not on the momentum. In or-
der to determine the importance of nonlocal correlations
we consider the ALM within CDMFT with two sites in
a unit cell, as the minimal model which includes non-
local correlations. We restrict to the paramagnetic so-
lution. Typical results for the f-electron self-energy are
shown in Fig. 7. The hybridization parameter in this fig-
ure is chosen very close to critical value V = 0.18 ≈ Vc,
but the results for the self-energy are qualitatively the
same also for hybridization away from the critical point.
The inter-site correlations are determined by the differ-
ence between even and odd components of the self energy,
Σ00 and Σππ. At T = 1/200, Fig. 7(a), the self-energy
fully coincides with the single site DMFT solution. At
T = 1/600, Fig. 7(b), very weak inter-site correlations
are present, and they gradually increase as the tempera-
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FIG. 7: (Color online) Comparison of the paramagnetic
DMFT and CDMFT solution for the self-energy on the Mat-
subara axis for V = 0.18 and T = 1/200, 1/600, 1/1200.

ture is further lowered to T = 1/1200, Fig. 7(c). We note
that we did not find any signatures of the Kondo break-
down - the decoupling of f-electrons and Fermi surface
reconstruction for V = Vc.

34 The imaginary part of the
self-energy ImΣf (ω = 0) goes to zero, and the quasipar-
ticle weight, Z = (1 − ∂ImΣ(iω)/∂ω)−1|ω→0+ ∼ 1/m∗,
remains finite as T → 0 and V = Vc.

The strength of nonlocal correlations can be quanti-
fied using the probabilities for the occupation of differ-
ent cluster eigenstates. At high temperatures, f-electrons
are almost decoupled, and the probabilities Ps and Pt for
the singlet and (one of three available) triplet states are
almost the same, and approach to the free spin value
Ps ≈ Pt ∼ 0.25. At low temperature the probabil-
ity of the singlet state suddenly increases [Fig. 8], and
the singlet cluster eigenstate is dominantly occupied for
T . Tnl. Large singlet probability Ps, which approaches
to 1 at the lowest temperatures, implies strong singlet
correlations. We can use these probabilities to define a
crossover temperature Tnl which divides the regions of

 0
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P
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FIG. 8: (Color online) Difference of probabilities for finding
the two-site impurity in the singlet and triplet cluster eigen-
state.

strong and weak inter-site correlations. We define Tnl
as the temperature when Ps − Pt = 0.1, which is shown
by a blue dotted line on the phase diagram, Fig. 1. Tnl
roughly follows TN , but Ps −Pt stays large at the lowest
temperatures also for V > Vc. The calculation of the ob-
servables, such as the spin susceptibility and resistivity,
remains to be done in future work. While for a reliable
quantitative analysis we need to study also larger clus-
ters and compare different clustering schemes since the
two-site cluster version may overestimate the local sin-
glet formation, we expect that the two impurity results
already give a good estimate of the line which separates
the regions of strong and weak inter-site correlations.

VI. CONCLUSION AND DISCUSSION

In summary, we have solved CDMFT equations with
two sites in a unit cell for a nearly half-filled Ander-
son lattice model and compared the results with single-
site DMFT. The phase diagram generally agrees with
Doniach’s physical picture: the antiferromagnetic phase
is stabilized when RKKY interaction energy is larger
than the Kondo temperature. The CDMFT solution
gives much narrower AFM phase as compared to DMFT,
which is expected since the mean-field solution generally
overestimates a tendency to magnetic order, and two-
site CDMFT overestimates the local singlet-formation,
which competes with the long range magnetic order,
hence the exact Néel temperature of the ALM is ex-
pected to be somewhere between the two limits. At tem-
peratures above TN the nonlocal correlations are small
and the CDMFT and the DMFT paramagnetic solution
are almost the same. This conclusion has important
practical consequences for theoretical studies of heavy
fermions. For temperatures larger than TN the self-
energy is weakly momentum-dependent, which explains
the success of local LDA+DMFT approach in ab initio
calculation of transport and thermodynamic properties
of heavy fermions. Heavy fermions are particularly well
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suited for the single-site DMFT approach since the inter-
esting crossovers in transport and thermodynamic prop-
erties, from coherent to fully incoherent behavior, are
seen in a broad temperature region above very low order-
ing temperature. At temperatures T . TN when short
range processes are included, and if frustration at short
distances is weak, the modifications from local DMFT
predictions can be substantial.
We have also determined the lattice coherence tem-

perature T ∗ from the resistivity and magnetic suscepti-
bility calculated within DMFT and made a careful com-
parison with the Kondo scale T o

K for diluted impurities
with the same set of parameters. The results clearly
show that there exists a single energy scale T ∗ ∼ T o

K ,
which dominates the low temperature properties in the
case of a nearly half-filled featureless conduction band.
The comparison with the CDMFT solution shows that
for stronger hybridization the nonlocal correlations are
negligible at temperatures T ∗(V ) and that T ∗ is approx-
imately the same as given by the local DMFT solution.
Near the quantum critical point, the inter-site correla-
tions have to be properly taken into account to determine
the lattice coherence scales. For this purpose, larger clus-
ters and different clustering schemes also need to be con-
sidered, an important research direction which is left for
future work. In real materials the effects of atomic mul-
tiplets and crystal fields, as well as the existence of sharp
peaks or dips in the density of states at the Fermi level
may significantly modify the low temperature physics6,35

as compared to our simple model.
We note that in this work we have concentrated on

a broad temperature range above the quantum criti-
cal point and have not directly addressed an important
and controversial question of the nature of the quan-
tum critical point.12,34,36 Our two-site CDMFT solu-
tion, however, shows that f-electron density of states re-
mains finite at the Fermi level even very near the critical
point and we did not see signatures of the Kondo break-
down - decoupling of the f-electrons from the conduction
bath at the Fermi level. This agrees with recent stud-
ies of the Kondo lattice model within dynamical cluster
approximation,37 and numerical renormalization group
studies of two-impurity Anderson model.38 Further stud-
ies in this direction are needed, for different parameter
regimes and larger clusters, facilitated with the CTQMC
impurity solver which is proven to be able to reliably
treat the competition of small energy scales.
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Appendix A: Self-consistency equations

In the CDMFT the original lattice is tiled with a su-
perlattice of clusters and an effective Anderson impurity
action is derived for a single cluster and supplemented
by the self-consistency condition which relates the cluster
Green’s function to the local Green’s function of the su-
perlattice. The hybridization bath for the Anderson im-
purity action, the cluster Green function and the cluster
self-energy have inter-site components and can be conve-
niently represented in the matrix form. For the cluster
of two impurities the Green function takes the form

Ĝf =







G11↓ G12↓ 0 0
G21↓ G22↓ 0 0
0 0 G11↑ G12↑

0 0 G21↑ G22↑






. (A1)

From the CDMFT self-consistency equation, the hy-
bridization function ∆̂ is given by

∆̂(iωn) = iωn + µ− Ef − Σ̂f (iωn)− Ĝ−1
f (iωn), (A2)

where the cluster Green function coincides with the local
component of the lattice Green function

Ĝf (iωn) =
1

N

∑

~k

Ĝf (iωn, ~k). (A3)

Ĝf (iωn, ~k) is easily obtained by integrating out the con-
duction electrons from the action which corresponds to
the Hamiltonian (2.1) and its spin σ component is ex-
plicitly given by

Ĝfσ(iωn, ~k) =

[(

iωn + µ− Ef 0
0 iωn + µ− Ef

)

−V 2
(

iωn + µ− t̂(~k)
)−1

−
(

Σ11σ Σ12σ

Σ21σ Σ22σ

)]−1

.(A4)

For a hypercubic lattice the summation over ~k is done
in the reduced Brillouin zone: kx ∈ (−π

2
, π
2
), ky, kz ∈

(−π, π), and the hopping term is equal to

t̂(~k) =

(

0 e−ikxε~k
eikxε~k 0

)

, (A5)

with ε~k = −2t(coskx + cos ky + cos kz).
We solve the two-site Anderson impurity problem us-

ing the CTQMC impurity solver as implemented in
Ref. 22. This requires to switch to the cluster momenta
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basis functions, which are in the case of two sites in a
cluster given by

|ψ0,σ〉 = (|σ, 0〉+ |0, σ〉) /
√
2

|ψπ,σ〉 = (|σ, 0〉 − |0, σ〉) /
√
2 (A6)

In this alternate basis, the hopping matrix is equal to

t̂(~k) = ε~k

(

cos kx i sinkx
−i sinkx − coskx

)

, (A7)

and the self-consistency equation is given by
(

G00σ G0πσ

Gπ0σ Gππσ

)

=
1

N

∑

k

[(

iωn + µ− Ef 0
0 iωn + µ− Ef

)

−V 2
(

iωn + µ− t̂(~k)
)−1

−
(

Σ00σ Σ0πσ

Σπ0σ Σππσ

)]−1

, (A8)

where
(

iωn + µ− t̂(~k)
)−1

=
1

(iωn + µ)2 − ε2~k

×
(

iωn + µ+ ε~k cos kx iε~k sin kx
−iε~k sin kx iωn + µ− ε~k cos kx

)

.(A9)

The components of the Green functions are related to
those in the direct basis as

G00σ = (G11σ +G22σ +G21σ +G12σ)/2,

G0πσ = (G11σ −G22σ +G21σ −G12σ)/2,

Gπ0σ = (G11σ −G22σ −G21σ +G12σ)/2,

Gππσ = (G11σ +G22σ −G21σ −G12σ)/2. (A10)

In the AFM phase G11↑ = G22↓, G22↑ = G11↓, G12↑ =
G21↓, and G21↑ = G12↓. Therefore, G00↑ = G00↓, Gππ↑ =
Gππ↓, G0π↑ = −G0π↓, and Gπ0↑ = −Gπ0↓. Also, the off-
diagonal Green’s functions at constant spin are the same,
G0π↑ = Gπ0↑ and G0π↓ = Gπ0↓. Analogous relations are
valid for the self-energy and for the hybridization bath.
Therefore, the effective two-impurity Anderson model is
solved in the hybridization bath with three independent
components

∆̂ =







∆00 ∆0π 0 0
∆0π ∆ππ 0 0
0 0 ∆00 −∆0π

0 0 −∆0π ∆ππ






, (A11)

and supplemented by the self-consistency condion,
Eqs. (A2) and (A8). The Green’s function also has three
independent components

G00 = (G11 +G22)/2 +G12,

G0π = (G11 −G22)/2,

Gππ = (G11 +G22)/2−G12, (A12)

where the spin index has been suppressed. Analogous
relations are valid for the self-energy. We note that the
off-diagonal components ∆0π lead to the antiferromag-
netic order. In the paramagnetic solution they are equal
to zero.

Appendix B: Green’s functions in the AFM solution

Typical results for the f-electron self-energy and
Green’s function in the AFM phase are given in Fig. 9.
The self-energy, Fig. 9(a), has very small nonlocal compo-
nent Σ12 = (Σ00 − Σππ)/2. Finite Σ0π component leads
to the staggered magnetization. The corresponding local
Green’s function, G11,σ = (G00,σ+Gππ,σ)/2+G0π,σ, has
different spin up and spin down components, Fig. 9(b).
For given parameters, nf↑ − nf↓ = 0.35, nc↑ − nc↓ =
−0.08, nf↑ + nf↓ = 0.96, and the total occupation is
1.92.
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FIG. 9: (Color online) Self-energy (a) and local Green’s func-
tion (b) in CDMFT solution for V = 0.16 and T = 1/800.

We note that the Néel temperature strongly depends
on the occupation number. It is the highest in the Kondo
insulator (for nf + nc = 2), and drops sharply as the
occupation number decreases. In the Kondo insulator
for V = 0.18, Ef = −0.6, we find that TDMFT

N ≈ 0.015,
which is similar as in Ref. 13, while TCDMFT

N ≈ 0.004.
We suspect that TN is much larger in Ref. 23 because
the solution gets stuck in a metastable local minimum,
giving false higher value for TN , or because of the self-
consistency condition, which is in fact different in Ref. 23.
The expression for the Green function in Ref. 23 includes
periodized self-energy which may be noncausal. In our
work, we use the standard CDMFT implementation of
the cluster DMFT.
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