940 research outputs found

    Na Induced Correlations in Nax_xCoO2_2

    Full text link
    Increasing experimental evidence is building which indicates that signatures of strong correlations are present in the Na rich region of Nax_xCoO2_2 (ie. x≈0.7x\approx0.7) and absent in the Na poor region (ie. x≈0.3x\approx0.3). This is unexpected given that NaCoO2_2 is a band insulator and CoO2_2 has an integer filled open shell making it a candidate for strong correlations. We explain these experimental observations by presenting a minimal low-energy Hamiltonian for the cobaltates and solving it within LDA+DMFT. The Na potential is shown to be a key element in understanding correlations in this material. Furthermore, LDA calculations for the realistic Na ordering predict a \emph{binary} perturbation of the Co sites which correlates with the Na1_1 sites (ie. Na sites above/below Co sites)

    Multi-patch model for transport properties of cuprate superconductors

    Full text link
    A number of normal state transport properties of cuprate superconductors are analyzed in detail using the Boltzmann equation. The momentum dependence of the electronic structure and the strong momentum anisotropy of the electronic scattering are included in a phenomenological way via a multi-patch model. The Brillouin zone and the Fermi surface are divided in regions where scattering between the electrons is strong and the Fermi velocity is low (hot patches) and in regions where the scattering is weak and the Fermi velocity is large (cold patches). We present several motivations for this phenomenology starting from various microscopic approaches. A solution of the Boltzmann equation in the case of N patches is obtained and an expression for the distribution function away from equilibrium is given. Within this framework, and limiting our analysis to the two patches case, the temperature dependence of resistivity, thermoelectric power, Hall angle, magnetoresistance and thermal Hall conductivity are studied in a systematic way analyzing the role of the patch geometry and the temperature dependence of the scattering rates. In the case of Bi-based cuprates, using ARPES data for the electronic structure, and assuming an inter-patch scattering between hot and cold states with a linear temperature dependence, a reasonable agreement with the available experiments is obtained.Comment: 18 pages, 18 figures, to be published on Eur. Phys. J.

    Orbital selective and tunable Kondo effect of magnetic adatoms on graphene: Correlated electronic structure calculations

    Full text link
    We have studied the effect of dynamical correlations on the electronic structure of single Co adatoms on graphene monolayers with a recently developed novel method for nanoscopic materials that combines density functional calculations with a fully dynamical treatment of the strongly interacting 3d-electrons. The coupling of the Co 3d-shell to the graphene substrate and hence the dynamic correlations are strongly dependent on the orbital symmetry and the system parameters (temperature, distance of the adatom from the graphene sheet, gate voltage). When the Kondo effect takes place, we find that the dynamical correlations give rise to strongly temperature-dependent peaks in the Co 3d-spectra near the Fermi level. Moreover, we find that the Kondo effect can be tuned by the application of a gate voltage. It turns out that the position of the Kondo peaks is pinned to the Dirac points of graphene rather than to the chemical potential.Comment: 12 pages, 7 figure

    Fermi arcs and the hidden zeros of the Green's function in the pseudogap state

    Full text link
    We investigate the low energy properties of a correlated metal in the proximity of a Mott insulator within the Hubbard model in two dimensions. We introduce a new version of the Cellular Dynamical Mean Field Theory using cumulants as the basic irreducible objects. These are used for re-constructing the lattice quantities from their cluster counterparts. The zero temperature one particle Green's function is characterized by the appearance of lines of zeros, in addition to a Fermi surface which changes topology as a function of doping. We show that these features are intimately connected to the opening of a pseudogap in the one particle spectrum and provide a simple picture for the appearance of Fermi arcs.Comment: revised version; 5 pages, 3 figure

    Non-local Coulomb interactions and metal-insulator transition in Ti2_2O3_3: a cluster LDA+DMFT approach

    Get PDF
    We present an ab initio quantum theory of the metal-insulator transition in Ti2_2O3_3. The recently developed cluster LDA+DMFT scheme is applied to describe the many-body features of this compound. The conventional single site DMFT cannot reproduce a low temperature insulating phase for any reasonable values of the Coulomb interaction. We show that the non-local Coulomb interactions and the strong chemical bonding within Ti-Ti pair is the origin of the small gap insulating ground state of Ti2_2O3_3

    Correlation-enhanced electron-phonon coupling: Applications of GW and screened hybrid functional to bismuthates, chloronitrides, and other high Tc superconductors

    Full text link
    We show that the electron-phonon coupling (EPC) in many materials can be significantly underestimated by the standard density functional theory (DFT) in the local density approximation (LDA) due to large non-local correlation effects. We present a simple yet efficient methodology to evaluate the realistic EPC going beyond LDA by using more advanced and accurate GW and screened hybrid functional DFT approaches. The corrections we propose explain the extraordinarily high superconducting temperatures that are observed in two distinct classes of compounds-the bismuthates and the transition metal chloronitrides, thus solving a thirty-year-old puzzle. Our work calls for the critically reevaluation of the EPC of certain phonon modes in many other materials such as cuprates and iron-based superconductors. The proposed methodology can be used to design new correlation-enhanced high temperature superconductors and other functional materials involving electron-phonon interaction.Comment: Substantilly extended version of the previous manuscript, 19 pages, 10 figures, accepted for publication in Phys. Rev.
    • …
    corecore