5 research outputs found

    Drowsing Driver Alert System for Commercial Vehicles

    Get PDF
    A number of accidents on our roads are caused by driver fatigue or drowsiness. Human fatalities as a result of driver drowsiness has been a major challenge for road safety bodies worldwide. Various road safety campaign messages have been put out to discourage drivers from driving whilst tired, but the problem still persists. Different technologies have been proposed over the years, but most seem to be too expensive to implement on a large scale. We present an inexpensive drowsing driver alert system in this paper. The system, known as Drowsing Driver Alert System (DDAS) is a smart system intended to effectively keep commercial drivers alert when driving. The system is able to detect when a driver is drowsy and alert him/her in real-time to prevent a potential accident. Using a camera, the eyes of the driver are monitored continuously whiles driving and analyzed to determine if they are shut or the blink rate is not normal. Two stages of alerts are given if the driver is determined to be drowsy. Log files of activities performed by the system are also saved to an external storage device to enable further analysis later

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Intelligent Miniature Circuit Breaker

    Get PDF
    The traditional electrical distribution panel (or breaker panel) is a system that divides the main electrical power feed and distributes them to subsidiary circuits whiles providing a protective mechanism via the use of miniature circuit breakers, residual current devices, etc. The conventional panel distributes electrical power alright but the system does not make provision for any form of real time monitoring and feedback of power consumption levels in the home. This paper presents a design of a miniature circuit breaker distribution panel integrated with other electronic devices which helps achieve real time monitoring of power consumption and also automatically trips the circuit if there is a fault and reconnects the circuit if the fault is cleared to ensure little to no interruption in electricity to appliances

    A Proposed DoS Detection Scheme for Mitigating DoS Attack Using Data Mining Techniques

    No full text
    A denial of service (DoS) attack in a computer network is an attack on the availability of computer resources to prevent users from having access to those resources over the network. Denial of service attacks can be costly, capable of reaching $100,000 per hour. Development of easily-accessible, simple DoS tools has increased the frequency and reduced the level of expertise needed to launch an attack. Though these attack tools have been available for years, there has been no proposed defense mechanism targeted specifically at them. Most defense mechanisms in literature are designed to defend attacks captured in datasets like the KDD Cup 99 dataset from 20 years ago and from tools no longer in use in modern attacks. In this paper, we capture and analyze traffic generated by some of these DoS attack tools using Wireshark Network Analyzer and propose a signature-based DoS detection mechanism based on SVM classifier to defend against attacks launched by these attack tools. Our proposed detection mechanism was tested with Snort IDS and compared with some already existing defense mechanisms in literature and had a high detection accuracy, low positive rate and fast detection time

    Blockchain interoperability: the state of heterogenous blockchain-to-blockchain communication

    No full text
    Blockchain technology has been increasingly adopted over the past few years since the introduction of Bitcoin, with several blockchain architectures and solutions being proposed. Most proposed solutions have been developed in isolation, without a standard protocol or cryptographic structure to work with. This has led to the problem of interoperability, where solutions running on different blockchain platforms are unable to communicate, limiting the scope of use. With blockchains being adopted in a variety of fields such as the Internet of Things, it is expected that the problem of interoperability if not addressed quickly, will stifle technology advancement. This paper presents the current state of interoperability solutions proposed for heterogenous blockchain systems. A look is taken at interoperability solutions, not only for cryptocurrencies, but also for general data-based use cases. Current open issues in heterogenous blockchain interoperability are presented. Additionally, some possible research directions are presented to enhance and to extend the existing blockchain interoperability solutions. It was discovered that though there are a number of proposed solutions in literature, few have seen real-world implementation. The lack of blockchain-specific standards has slowed the progress of interoperability. It was also realized that most of the proposed solutions are developed targeting cryptocurrency-based applications
    corecore