229 research outputs found

    Direct Observation of Nonequivalent Fermi-Arc States of Opposite Surfaces in Noncentrosymmetric Weyl Semimetal NbP

    Full text link
    We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on noncentrosymmetric Weyl semimetal candidate NbP, and determined the electronic states of both Nb- and P-terminated surfaces corresponding to the "opposite" surfaces of a polar crystal. We revealed a drastic difference in the Fermi-surface topology between the opposite surfaces, whereas the Fermi arcs on both surfaces are likely terminated at the surface projection of the same bulk Weyl nodes. Comparison of the ARPES data with our first-principles band calculations suggests notable difference in electronic structure at the Nb-terminated surface between theory and experiment. The present result opens a platform for realizing exotic quantum phenomena arising from unusual surface properties of Weyl semimetals.Comment: 5 pages, 4 figure

    Search for Dark Photon Dark Matter in the Mass Range 74-110 μeV with a Cryogenic Millimeter-Wave Receiver

    Get PDF
    ミリ波を用いたダークマター探索手法を確立. 京都大学プレスリリース. 2023-03-07.Thinking big and dark by starting small and light: Millimeter-wave technologies assist in examining 'light' dark matter. 京都大学プレスリリース. 2023-03-23.We search for the dark photon dark matter (DPDM) using a cryogenic millimeter-wave receiver. DPDM has a kinetic coupling with electromagnetic fields with a coupling constant of χ and is converted into ordinary photons at the surface of a metal plate. We search for signal of this conversion in the frequency range 18-26.5 GHz, which corresponds to the mass range 74-110 μeV/c². We observed no significant signal excess, allowing us to set an upper bound of χ<(0.3-2.0)×10⁻¹⁰ at 95% confidence level. This is the most stringent constraint to date and tighter than cosmological constraints. Improvements from previous studies are obtained by employing a cryogenic optical path and a fast spectrometer

    Large-scale prospective genome-wide association study of oxaliplatin in stage II/III colon cancer and neuropathy

    Get PDF
    [Background] The severity of oxaliplatin (L-OHP)-induced peripheral sensory neuropathy (PSN) exhibits substantial interpatient variability, and some patients suffer from long-term, persisting PSN. To identify single-nucleotide polymorphisms (SNPs) predicting L-OHP-induced PSN using a genome-wide association study (GWAS) approach. [Patients and methods] A large prospective GWAS including 1379 patients with stage II/III colon cancer who received L-OHP-based adjuvant chemotherapy (mFOLFOX6/CAPOX) under the phase II (JOIN/JFMC41) or the phase III (ACHIVE/JFMC47) trial. Firstly, GWAS comparison of worst grade PSN (grade 0/1 versus 2/3) was carried out. Next, to minimize the impact of ambiguity in PSN grading, extreme PSN phenotypes were selected and analyzed by GWAS. SNPs that could predict time to recovery from PSN were also evaluated. In addition, SNPs associated with L-OHP-induced allergic reactions (AR) and time to disease recurrence were explored. [Results] No SNPs exceeded the genome-wide significance (P < 5.0 × 10−8) in either GWAS comparison of worst grade PSN, extreme PSN phenotypes, or time to recovery from PSN. An association study focusing on AR or time to disease recurrence also failed to reveal any significant SNPs. [Conclusion] Our results highlight the challenges of utilizing SNPs for predicting susceptibility to L-OHP-induced PSN in daily clinical practice

    Measurement of 1.7 to 74 MeV polarised gamma rays with the HARPO TPC

    Full text link
    Current {\gamma}-ray telescopes based on photon conversions to electron-positron pairs, such as Fermi, use tungsten converters. They suffer of limited angular resolution at low energies, and their sensitivity drops below 1 GeV. The low multiple scattering in a gaseous detector gives access to higher angular resolution in the MeV-GeV range, and to the linear polarisation of the photons through the azimuthal angle of the electron-positron pair. HARPO is an R&D program to characterise the operation of a TPC (Time Projection Chamber) as a high angular-resolution and sensitivity telescope and polarimeter for {\gamma} rays from cosmic sources. It represents a first step towards a future space instrument. A 30 cm cubic TPC demonstrator was built, and filled with 2 bar argon-based gas. It was put in a polarised {\gamma}-ray beam at the NewSUBARU accelerator in Japan in November 2014. Data were taken at different photon energies from 1.7 MeV to 74 MeV, and with different polarisation configurations. The electronics setup is described, with an emphasis on the trigger system. The event reconstruction algorithm is quickly described, and preliminary measurements of the polarisation of 11 MeVphotons are shown.Comment: Proceedings VCI201

    Fundamental physics with cold radioactive atoms

    Get PDF
    The fundamental symmetries, charge conjugation (C), parity (P) and time reversal (T), play a significant role in the Standard Model (SM) of elementary particle physics. Of these, T symmetry and the combined CP symmetry are the least well understood, and they hold valuable clues for unraveling the secrets of nature. All subatomic particles are postulated to possess an intrinsic property known as a permanent electric dipole moment (EDM). The EDM of an atom is a combination of those of each constituent particle and also CP-violating interactions between the particles. Being many-particle systems, atoms and molecules are ideal candidates for probing a rich variety of both T- and CP-violating interactions. Paramagnetic atoms, which have a single valence electron in their outer shell, are sensitive to subtle signals associated with CP violations in the leptonic sector, i.e., the EDM of the electron. At present, we are developing a high-intensity laser-cooled Fr factory at RIKEN accelerator facility in an attempt to evaluate the EDM of Fr to an accuracy of 10-30 ecm. Laser cooling is important for achieving highly accurate EDM measurements, since it allows long interaction times using an optical lattice. The current status of the laser-cooled Fr EDM experiments is presented in this paper.</p

    The unprecedented optical outburst of the quasar 3C 454.3. The WEBT campaign of 2004-2005

    Get PDF
    The radio quasar 3C 454.3 underwent an exceptional optical outburst lasting more than 1 year and culminating in spring 2005. The maximum brightness detected was R = 12.0, which represents the most luminous quasar state thus far observed (M_B ~ -31.4). In order to follow the emission behaviour of the source in detail, a large multiwavelength campaign was organized by the Whole Earth Blazar Telescope (WEBT). Continuous optical, near-IR and radio monitoring was performed in several bands. ToO pointings by the Chandra and INTEGRAL satellites provided additional information at high energies in May 2005. The historical radio and optical light curves show different behaviours. Until about 2001.0 only moderate variability was present in the optical regime, while prominent and long-lasting radio outbursts were visible at the various radio frequencies, with higher-frequency variations preceding the lower-frequency ones. After that date, the optical activity increased and the radio flux is less variable. This suggests that the optical and radio emissions come from two separate and misaligned jet regions, with the inner optical one acquiring a smaller viewing angle during the 2004-2005 outburst. Moreover, the colour-index behaviour (generally redder-when-brighter) during the outburst suggests the presence of a luminous accretion disc. A huge mm outburst followed the optical one, peaking in June-July 2005. The high-frequency (37-43 GHz) radio flux started to increase in early 2005 and reached a maximum at the end of our observing period (end of September 2005). VLBA observations at 43 GHz during the summer confirm theComment: 7 pages, 4 figures, to be published in A&

    One-dimensional Topological Edge States of Bismuth Bilayers

    Get PDF
    The hallmark of a time-reversal symmetry protected topologically insulating state of matter in two-dimensions (2D) is the existence of chiral edge modes propagating along the perimeter of the system. To date, evidence for such electronic modes has come from experiments on semiconducting heterostructures in the topological phase which showed approximately quantized values of the overall conductance as well as edge-dominated current flow. However, there have not been any spectroscopic measurements to demonstrate the one-dimensional (1D) nature of the edge modes. Among the first systems predicted to be a 2D topological insulator are bilayers of bismuth (Bi) and there have been recent experimental indications of possible topological boundary states at their edges. However, the experiments on such bilayers suffered from irregular structure of their edges or the coupling of the edge states to substrate's bulk states. Here we report scanning tunneling microscopy (STM) experiments which show that a subset of the predicted Bi-bilayers' edge states are decoupled from states of Bi substrate and provide direct spectroscopic evidence of their 1D nature. Moreover, by visualizing the quantum interference of edge mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties that are consistent with strong suppression of backscattering as predicted for the propagating topological edge states.Comment: 15 pages, 5 figures, and supplementary materia

    The WEBT Campaign on the Blazar 3C279 in 2006

    Full text link
    The quasar 3C279 was the target of an extensive multiwavelength monitoring campaign from January through April 2006, including an optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we focus on the results of the WEBT campaign. The source exhibited substantial variability of optical flux and spectral shape, with a characteristic time scale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other. In intriguing contrast to other (in particular, BL Lac type) blazars, we find a lag of shorter- behind longer-wavelength variability throughout the RVB ranges, with a time delay increasing with increasing frequency. Spectral hardening during flares appears delayed with respect to a rising optical flux. This, in combination with the very steep IR-optical continuum spectral index of ~ 1.5 - 2.0, may indicate a highly oblique magnetic field configuration near the base of the jet. An alternative explanation through a slow (time scale of several days) acceleration mechanism would require an unusually low magnetic field of < 0.2 G, about an order of magnitude lower than inferred from previous analyses of simultaneous SEDs of 3C279 and other FSRQs with similar properties.Comment: Accepted for publication in Ap

    Display of both N- and C-terminal target fusion proteins on the Aspergillus oryzae cell surface using a chitin-binding module

    Get PDF
    A novel cell surface display system in Aspergillus oryzae was established by using a chitin-binding module (CBM) from Saccharomyces cerevisiae as an anchor protein. CBM was fused to the N or C terminus of green fluorescent protein (GFP) and the fusion proteins (GFP-CBM and CBM-GFP) were expressed using A. oryzae as a host. Western blotting and fluorescence microscopy analysis showed that both GFP-CBM and CBM-GFP were successfully expressed on the cell surface. In addition, cell surface display of triacylglycerol lipase from A. oryzae (tglA), while retaining its activity, was also successfully demonstrated using CBM as an anchor protein. The activity of tglA was significantly higher when tglA was fused to the C terminus than N terminus of CBM. Together, these results show that CBM used as a first anchor protein enables the fusion of both the N and/or C terminus of a target protein
    corecore